リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Role for μ-opioid receptor in antidepressant effects of δ-opioid receptor agonist KNT-127」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Role for μ-opioid receptor in antidepressant effects of δ-opioid receptor agonist KNT-127

Moriya, Yuki Kasahara, Yoshiyuki Shimada, Masafumi Sakakibara, Yasufumi Fujii, Hideaki Nagase, Hiroshi Ide, Soichiro Ikeda, Kazutaka Hall, F. Scott Uhl, George R. Sora, Ichiro 神戸大学

2023.03

概要

Previous pharmacological data have shown the possible existence of functional interactions between μ- (MOP), κ- (KOP), and δ-opioid receptors (DOP) in pain and mood disorders. We previously reported that MOP knockout (KO) mice exhibit a lower stress response compared with wildtype (WT) mice. Moreover, DOP agonists have been shown to exert antidepressant-like effects in numerous animal models. In the present study, the tail suspension test (TST) and forced swim test (FST) were used to examine the roles of MOP and DOP in behavioral despair. MOP-KO mice and WT mice were treated with KNT-127 (10 mg/kg), a selective DOP agonist. The results indicated a significant decrease in immobility time in the KNT-127 group compared with the saline group in all genotypes in both tests. In the saline groups, immobility time significantly decreased in MOP-KO mice compared with WT mice in both tests. In female MOP-KO mice, KNT-127 significantly decreased immobility time in the TST compared with WT mice. In male MOP-KO mice, however, no genotypic differences were found in the TST after either KNT-127 or saline treatment. Thus, at least in the FST and TST, the activation of DOP and absence of MOP had additive effects in reducing measures of behavioral despair, suggesting that effects on this behavior by DOP activation occur independently of MOP.

この論文で使われている画像

参考文献

1. Shimizu H. Narrative reconstruction of mental illness as a work-stress-induced disorder: processes, consequences and implications. Sociol Health Illness. 2021;43(5):1206e1220.

2. Deonaraine KK, Wang Q, Cheng H, et al. Sex-specific peripheral and central responses to stress-induced depression and treatment in a mouse model. J Neurosci Res. 2020;98(12):2541e2553.

3. Yang H, Drummer TD, Carter JR. Sex differences in sympathetic neural and limb vascular reactivity to mental stress in humans. Am J Physiol Heart Circ Physiol. 2013;304(3):H436eH443.

4. Veldhuijzen van Zanten JJ, Ring C, Burns VE, Edwards KM, Drayson M, Carroll D. Mental stress-induced hemoconcentration: sex differences and mechanisms. Psychophysiology. 2004;41(4):541e551.

5. Chen Y, Dangardt F, Osika W, Berggren K, Gronowitz E, Friberg P. Age- and sex- related differences in vascular function and vascular response to mental stress: longitudinal and cross-sectional studies in a cohort of healthy children and adolescents. Atherosclerosis. 2012;220(1):269e274.

6. Sora I. Opioid receptor knockout mice. Nihon Shinkei Seishin Yakurigaku Zasshi. 1999;19(5):239e249.

7. Varlinskaya EI, Spear LP, Diaz MR. Stress alters social behavior and sensitivity to pharmacological activation of kappa opioid receptors in an age-specific manner in Sprague Dawley rats. Neurobiol Stress. 2018;9:124e132.

8. Wu S, Wong MC, Chen M, Cho CH, Wong TM. Role of opioid receptors in car- dioprotection of cold-restraint stress and morphine. J Biomed Sci. 2004;11(6): 726e731.

9. Sugiyama A, Yamada M, Furuie H, et al. Systemic administration of a delta opioid receptor agonist, KNT-127, facilitates extinction learning of fear memory in rats. J Pharmacol Sci. 2019;139(3):174e179.

10. Ide S, Sora I, Ikeda K, Minami M, Uhl GR, Ishihara K. Reduced emotional and corticosterone responses to stress in m-opioid receptor knockout mice. Neuropharmacology. 2010;58(1):241e247.

11. Komatsu H, Ohara A, Sasaki K, et al. Decreased response to social defeat stress in m-opioid-receptor knockout mice. Pharmacol Biochem Behav. 2011;99(4): 676e682.

12. Pierre F, Ugur M, Faivre F, Doridot S, Veinante P, Massotte D. Morphine- dependent and abstinent mice are characterized by a broader distribution of the neurons co-expressing mu and delta opioid receptors. Neuropharmacology. 2019;152:30e41.

13. Jozwiak K, Plazinska A. Structural insights into ligand-receptor interactions involved in biased agonism of G-protein coupled receptors. Molecules. 2021;26(4):851.

14. Nagase H, Saitoh A. Research and development of k opioid receptor agonists and d opioid receptor agonists. Pharmacol Ther. 2020;205, 107427.

15. Negus SS, Butelman ER, Chang KJ, DeCosta B, Winger G, Woods JH. Behavioral effects of the systemically active delta opioid agonist BW373U86 in rhesus monkeys. J Pharmacol Exp Therapeut. 1994;270(3):1025e1034.

16. Saitoh A, Kimura Y, Suzuki T, Kawai K, Nagase H, Kamei J. Potential anxiolytic and antidepressant-like activities of SNC80, a selective d-opioid agonist, in behavioral models in rodents. J Pharmacol Sci. 2004;95(3):374e380.

17. Perrine SA, Hoshaw BA, Unterwald EM. Delta opioid receptor ligands modulate anxiety-like behaviors in the rat. Br J Pharmacol. 2006;147(8):864e872.

18. Filliol D, Ghozland S, Chluba J, et al. Mice deficient for d- and m-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet. 2000;25(2): 195e200.

19. Broom DC, Jutkiewicz EM, Rice KC, Traynor JR, Woods JH. Behavioral effects of d-opioid receptor agonists: potential antidepressants? Jpn J Pharmacol. 2002;90(1):1e6.

20. Matthes HW, Smadja C, Valverde O, et al. Activity of the d-opioid receptor is partially reduced, whereas activity of the k-receptor is maintained in mice lacking the m-receptor. J Neurosci. 1998;18(18):7285e7295.

21. Nagase H, Nemoto T, Matsubara A, et al. Design and synthesis of KNT-127, a d- opioid receptor agonist effective by systemic administration. Bioorg Med Chem Lett. 2010;20(21):6302e6305.

22. Sakamoto K, Yamada D, Yamanaka N, et al. A selective delta opioid receptor agonist SNC80, but not KNT-127, induced tremor-like behaviors via hippo- campal glutamatergic system in mice. Brain Res. 2021;1757, 147297.

23. Yamada D, Takahashi J, Iio K, Nagase H, Saitoh A. Modulation of glutamatergic synaptic transmission and neuronal excitability in the prelimbic medial pre- frontal cortex via delta-opioid receptors in mice. Biochem Biophys Res Commun. 2021;560:192e198.

24. Saitoh A, Suzuki S, Soda A, et al. The delta opioid receptor agonist KNT-127 in the prelimbic medial prefrontal cortex attenuates veratrine-induced anxiety- like behaviors in mice. Behav Brain Res. 2018;336:77e84.

25. Rozenfeld R, Devi LA. Receptor heterodimerization leads to a switch in signaling: b-arrestin2-mediated ERK activation by m-d opioid receptor heter- odimers. Faseb J. 2007;21(10):2455e2465.

26. Costantino CM, Gomes I, Stockton SD, Lim MP, Devi LA. Opioid receptor het- eromers in analgesia. Expet Rev Mol Med. 2012;14:e9.

27. Erbs E, Faget L, Scherrer G, et al. A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Struct Funct. 2015;220(2):677e702.

28. Nobile B, Ramoz N, Jaussent I, et al. Polymorphism A118G of opioid receptor mu 1 (OPRM1) is associated with emergence of suicidal ideation at antide- pressant onset in a large naturalistic cohort of depressed outpatients. Sci Rep. 2019;9(1):2569.

29. Sora I, Takahashi N, Funada M, et al. Opiate receptor knockout mice define m receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci U S A. 1997;94(4):1544e1549.

30. Saitoh A, Sugiyama A, Nemoto T, et al. The novel d opioid receptor agonist KNT-127 produces antidepressant-like and antinociceptive effects in mice without producing convulsions. Behav Brain Res. 2011;223(2):271e279.

31. Chatterjee M, Jaiswal M, Palit G. Comparative evaluation of forced swim test and tail suspension test as models of negative symptom of schizophrenia in rodents. ISRN Psychiatry. 2012;2012, 595141.

32. Sakamoto K, Okahashi T, Matsumura S, et al. The opioid system majorly con- tributes to preference for fat emulsions but not sucrose solutions in mice. Biosci Biotechnol Biochem. 2015;79(4):658e663.

33. Zhang M, Kelley AE. Opiate agonists microinjected into the nucleus accumbens enhance sucrose drinking in rats. Psychopharmacology. 1997;132(4):350e360.

34. Glass MJ, Grace MK, Cleary JP, Billington CJ, Levine AS. Naloxone's effect on meal microstructure of sucrose and cornstarch diets. Am J Physiol Regul Integr Comp Physiol. 2001;281(5):R1605eR1612.

35. Ostlund SB, Kosheleff A, Maidment NT, Murphy NP. Decreased consumption of sweet fluids in m opioid receptor knockout mice: a microstructural analysis of licking behavior. Psychopharmacology. 2013;229(1):105e113.

36. Papaleo F, Kieffer BL, Tabarin A, Contarino A. Decreased motivation to eat in m- opioid receptor-deficient mice. Eur J Neurosci. 2007;25(11):3398e3405.

37. Saitoh A, Soda A, Kayashima S, et al. A delta opioid receptor agonist, KNT-127, in the prelimbic medial prefrontal cortex attenuates glial glutamate trans- porter blocker-induced anxiety-like behavior in mice. J Pharmacol Sci. 2018;138(3):176e183.

38. Sugiyama A, Yamada M, Saitoh A, Nagase H, Oka JI, Yamada M. Administration of a delta opioid receptor agonist KNT-127 to the basolateral amygdala has robust anxiolytic-like effects in rats. Psychopharmacology. 2018;235(10): 2947e2955.

39. Fujii H, Uchida Y, Shibasaki M, et al. Discovery of d opioid receptor full agonists lacking a basic nitrogen atom and their antidepressant-like effects. Bioorg Med Chem Lett. 2020;30(12), 127176.

40. Nozaki C, Nagase H, Nemoto T, Matifas A, Kieffer BL, Gaveriaux-Ruff C. In vivo properties of KNT-127, a novel d opioid receptor agonist: receptor internali- zation, antihyperalgesia and antidepressant effects in mice. Br J Pharmacol. 2014;171(23):5376e5386.

41. Fichna J, Janecka A, Piestrzeniewicz M, Costentin J, do Rego JC. Antidepressant- like effect of endomorphin-1 and endomorphin-2 in mice. Neuro- psychopharmacology. 2007;32(4):813e821.

42. Suzuki T, Tsuji M, Mori T, Misawa M, Endoh T, Nagase H. Effects of a highly selective nonpeptide d opioid receptor agonist, TAN-67, on morphine-induced antinociception in mice. Life Sci. 1995;57(2):155e168.

43. Sugiyama A, Nagase H, Oka J, Yamada M, Saitoh A. DOR2-selective but not DOR1-selective antagonist abolishes anxiolytic-like effects of the d opioid re- ceptor agonist KNT-127. Neuropharmacology. 2014;79:314e320.

44. Hall FS, Goeb M, Li XF, Sora I, Uhl GR. m-Opioid receptor knockout mice display reduced cocaine conditioned place preference but enhanced sensitization of cocaine-induced locomotion. Brain Res Mol Brain Res. 2004;121(1-2):123e130.

45. Moriya Y, Kasahara Y, Hall FS, et al. Sex differences in the effects of adolescent social deprivation on alcohol consumption in m-opioid receptor knockout mice. Psychopharmacology. 2015;232(8):1471e1482.

46. Fujita W, Gomes I, Devi LA. Heteromers of m-d opioid receptors: new pharma- cology and novel therapeutic possibilities. Br J Pharmacol. 2015;172(2):375e387.

47. Martinez-Navarro M, Cabanero D, Wawrzczak-Bargiela A, et al. Mu and delta opioid receptors play opposite nociceptive and behavioural roles on nerve- injured mice. Br J Pharmacol. 2020;177(5):1187e1205.

48. Rosenblum A, Marsch LA, Joseph H, Portenoy RK. Opioids and the treatment of chronic pain: controversies, current status, and future directions. Exp Clin Psychopharmacol. 2008;16(5):405e416.

49. Cooper ZD, Truong YN, Shi YG, Woods JH. Morphine deprivation increases self- administration of the fast- and short-acting m-opioid receptor agonist remi- fentanil in the rat. J Pharmacol Exp Therapeut. 2008;326(3):920e929.

50. Inturrisi CE. Clinical pharmacology of opioids for pain. Clin J Pain. 2002;18(4): S3eS13.

51. Meier IM, van Honk J, Bos PA, Terburg D. A mu-opioid feedback model of human social behavior. Neurosci Biobehav Rev. 2021;121:250e258.

52. Sora I, Li XF, Funada M, Kinsey S, Uhl GR. Visceral chemical nociception in mice lacking m-opioid receptors: effects of morphine, SNC80 and U-50,488. Eur J Pharmacol. 1999;366(2-3):R3eR5.

53. Bilsky EJ, Calderon SN, Wang T, et al. SNC 80, a selective, nonpeptidic and systemically active opioid delta agonist. J Pharmacol Exp Therapeut. 1995;273(1):359e366.

54. Nagase H, Kawai K, Hayakawa J, et al. Rational drug design and synthesis of a highly selective nonpeptide delta-opioid agonist, (4aS*,12aR*)-4a-(3- hydroxyphenyl)-2-methyl- 1,2,3,4,4a,5,12,12a-octahydropyrido[3,4-b]acridine (TAN-67). Chem Pharm Bull. 1998;46(11):1695e1702.

55. Saitoh A, Sugiyama A, Yamada M, et al. The novel d opioid receptor agonist KNT-127 produces distinct anxiolytic-like effects in rats without producing the adverse effects associated with benzodiazepines. Neuropharmacology. 2013;67: 485e493.

56. Finn DA, Helms ML, Nipper MA, Cohen A, Jensen JP, Devaud LL. Sex differences in the synergistic effect of prior binge drinking and traumatic stress on sub- sequent ethanol intake and neurochemical responses in adult C57BL/6J mice. Alcohol. 2018;71:33e45.

57. Chalangal J, Mazid S, Windisch K, Milner TA. Sex differences in the rodent hippocampal opioid system following stress and oxycodone associated learning processes. Pharmacol Biochem Behav. 2022;212, 173294.

58. Galligan JJ, Sternini C. Insights into the role of opioid receptors in the GI tract: experimental evidence and therapeutic relevance. Handb Exp Pharmacol. 2017;239:363e378.

59. Hayashi T, Yasueda Y, Tamura T, Takaoka Y, Hamachi I. Analysis of cell-surface receptor dynamics through covalent labeling by catalyst-tethered antibody. J Am Chem Soc. 2015;137(16):5372e5380.

参考文献をもっと見る