リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Aggravated brain injury after neonatal hypoxic ischemia in microglia-depleted mice.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Aggravated brain injury after neonatal hypoxic ischemia in microglia-depleted mice.

TSUJI Shunichiro 30601546 0000-0003-3945-6817 DI MARTINO Elena MUKAI Takeo TSUJI Shoko MURAKAMI Takashi 20240666 0000-0002-0250-0856 HARRIS Robert A BLOMGREN Klas ÅDEN Ulrika 滋賀医科大学

2020.04.11

概要

BACKGROUND:
Neuroinflammation plays an important role in neonatal hypoxic-ischemic encephalopathy (HIE). Although microglia are largely responsible for injury-induced inflammatory response, they play beneficial roles in both normal and disease states. However, the effects of microglial depletion on neonatal HIE remain unclear.
METHODS:
Tamoxifen was administered to Cx3cr1CreER/+Rosa26DTA/+ (microglia-depleted model) and Cx3cr1CreER/+Rosa26DTA/- (control) mice at P8 and P9 to assess the effect of microglial depletion. The density of microglia was quantified using Iba-1 staining. Moreover, the proportion of resident microglia after the HI insult was analyzed using flow cytometric analysis. At P10, the HI insult was conducted using the Rice-Vannucci procedure at P10. The infarct size and apoptotic cells were analyzed at P13. Cytokine analyses were performed using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) at P13.
RESULTS:
At P10, tamoxifen administration induced > 99% microglial depletion in DTA+ mice. Following HI insult, there was persisted microglial depletion over 97% at P13. Compared to male DTA- mice, male DTA+ mice exhibited significantly larger infarct volumes; however, there were no significant differences among females. Moreover, compared to male DTA- mice, male DTA+ mice had a significantly higher density of TUNEL+ cells in the caudoputamen, cerebral cortex, and thalamus. Moreover, compared to female DTA- mice, female DTA+ mice showed a significantly greater number of TUNEL+ cells in the hippocampus and thalamus. Compared to DTA- mice, ELISA revealed significantly lower IL-10 and TGF-β levels in both male and female DTA+ mice under both normal conditions and after HI (more pronounced).
CONCLUSION:
We established a microglial depletion model that aggravated neuronal damage and apoptosis after the HI insult, which was predominantly observed in males.

この論文で使われている画像

参考文献

1. Kaur C, Rathnasamy G, Ling EA. Roles of activated microglia in hypoxia

induced neuroinflammation in the developing brain and the retina. J

Neuroimmune Pharmacol. 2013;8:66–78.

2. Weinstein JR, Koerner IP, Moller T. Microglia in ischemic brain injury. Future

Neurol. 2010;5:227–46.

3. Hellstrom Erkenstam N, Smith PL, Fleiss B, Nair S, Svedin P, Wang W, et al.

Temporal characterization of microglia/macrophage phenotypes in a mouse

model of neonatal hypoxic-ischemic brain injury. Front Cell Neurosci. 2016;

10:286.

4. Bonestroo HJ, Nijboer CH, van Velthoven CT, Kavelaars A, Hack CE, van Bel F,

et al. Cerebral and hepatic inflammatory response after neonatal hypoxiaischemia in newborn rats. Dev Neurosci. 2013;35:197–211.

5. Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/

macrophages in neuroinflammation and neurogenesis after stroke. Prog

Neurobiol. 2016;142:23–44.

6. Savman K, Heyes MP, Svedin P, Karlsson A. Microglia/macrophage-derived

inflammatory mediators galectin-3 and quinolinic acid are elevated in

cerebrospinal fluid from newborn infants after birth asphyxia. Transl Stroke

Res. 2013;4:228–35.

7. Umekawa T, Osman AM, Han W, Ikeda T, Blomgren K. Resident microglia,

rather than blood-derived macrophages, contribute to the earlier and more

pronounced inflammatory reaction in the immature compared with the

adult hippocampus after hypoxia-ischemia. Glia. 2015;63:2220–30.

8. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al. Microglia/macrophage

polarization dynamics reveal novel mechanism of injury expansion after

focal cerebral ischemia. Stroke. 2012;43:3063–70.

9. Dudvarski Stankovic N, Teodorczyk M, Ploen R, Zipp F, Schmidt MHH.

Microglia-blood vessel interactions: a double-edged sword in brain

pathologies. Acta Neuropathol. 2016;131:347–63.

10. Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T.

Microglia and monocytes/macrophages polarization reveal novel

therapeutic mechanism against stroke. Int J Mol Sci. 2017;18.

11. Vivien D, Ali C. Transforming growth factor-beta signalling in brain

disorders. Cytokine Growth Factor Rev. 2006;17:121–8.

12. Su W, Hopkins S, Nesser NK, Sopher B, Silvestroni A, Ammanuel S, et al. The

p53 transcription factor modulates microglia behavior through microRNAdependent regulation of c-Maf. J Immunol. 2014;192:358–66.

13. Inose Y, Kato Y, Kitagawa K, Uchiyama S, Shibata N. Activated microglia in

ischemic stroke penumbra upregulate MCP-1 and CCR2 expression in

response to lysophosphatidylcholine derived from adjacent neurons and

astrocytes. Neuropathology. 2015;35:209–23.

14. Huang M, Wan Y, Mao L, He QW, Xia YP, Li M, et al. Inhibiting the migration

of M1 microglia at hyperacute period could improve outcome of tMCAO

rats. CNS Neurosci Ther. 2017;23:222–32.

15. Kothari PH, Kolar GR, Jen JC, Hajj-Ali R, Bertram P, Schmidt RE, et al. TREX1 is

expressed by microglia in normal human brain and increases in regions

affected by ischemia. Brain Pathol. 2018;28:806–21.

16. Villa A, Gelosa P, Castiglioni L, Cimino M, Rizzi N, Pepe G, et al. Sex-specific

features of microglia from adult mice. Cell Rep. 2018;23:3501–11.

17. Wu CY, Zha H, Xia QQ, Yuan Y, Liang XY, Li JH, et al. Expression of angiotensin

II and its receptors in activated microglia in experimentally induced cerebral

ischemia in the adult rats. Mol Cell Biochem. 2013;382:47–58.

Page 14 of 15

18. Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, et al. The influence

of age on apoptotic and other mechanisms of cell death after cerebral

hypoxia-ischemia. Cell Death Differ. 2005;12:162–76.

19. Zhu C, Qiu L, Wang X, Xu F, Nilsson M, Cooper-Kuhn C, et al. Agedependent regenerative responses in the striatum and cortex after hypoxiaischemia. J Cereb Blood Flow Metab. 2009;29:342–54.

20. Cikla U, Chanana V, Kintner DB, Covert L, Dewall T, Waldman A, et al.

Suppression of microglia activation after hypoxia-ischemia results in agedependent improvements in neurologic injury. J Neuroimmunol. 2016;291:

18–27.

21. Ferrazzano P, Chanana V, Uluc K, Fidan E, Akture E, Kintner DB, et al. Agedependent microglial activation in immature brains after hypoxia- ischemia.

CNS Neurol Disord Drug Targets. 2013;12:338–49.

22. Han X, Li Q, Lan X, El-Mufti L, Ren H, Wang J. Microglial depletion with

clodronate liposomes increases proinflammatory cytokine levels, induces

astrocyte activation, and famages blood vessel integrity. Mol Neurobiol.

2019.

23. Lund H, Pieber M, Parsa R, Grommisch D, Ewing E, Kular L, et al. Fatal

demyelinating disease is induced by monocyte-derived macrophages in the

absence of TGF-beta signaling. Nat Immunol. 2018;19:1–7.

24. Huang Y, Xu Z, Xiong S, Sun F, Qin G, Hu G, et al. Repopulated microglia are

solely derived from the proliferation of residual microglia after acute

depletion. Nat Neurosci. 2018;21:530–40.

25. Zhao R, Hu W, Tsai J, Li W, Gan WB. Microglia limit the expansion of betaamyloid plaques in a mouse model of Alzheimer’s disease. Mol

Neurodegener. 2017;12:47.

26. Jin WN, Shi SX, Li Z, Li M, Wood K, Gonzales RJ, et al. Depletion of microglia

exacerbates postischemic inflammation and brain injury. J Cereb Blood

Flow Metab. 2017;37:2224–36.

27. Garre JM, Silva HM, Lafaille JJ, Yang G. CX3CR1(+) monocytes modulate

learning and learning-dependent dendritic spine remodeling via TNF-alpha.

Nat Med. 2017;23:714–22.

28. Szalay G, Martinecz B, Lenart N, Kornyei Z, Orsolits B, Judak L, et al. Microglia

protect against brain injury and their selective elimination dysregulates

neuronal network activity after stroke. Nat Commun. 2016;7:11499.

29. Fernandez-Lopez D, Faustino J, Klibanov AL, Derugin N, Blanchard E, Simon

F, et al. Microglial cells prevent hemorrhage in neonatal focal arterial stroke.

J Neurosci. 2016;36:2881–93.

30. Rice RA, Spangenberg EE, Yamate-Morgan H, Lee RJ, Arora RP, Hernandez

MX, et al. Elimination of microglia improves functional outcomes following

extensive neuronal loss in the hippocampus. J Neurosci. 2015;35:9977–89.

31. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, et al.

Microglia promote learning-dependent synapse formation through brainderived neurotrophic factor. Cell. 2013;155:1596–609.

32. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al.

Colony-stimulating factor 1 receptor signaling is necessary for microglia

viability, unmasking a microglia progenitor cell in the adult brain. Neuron.

2014;82:380–97.

33. Han J, Harris RA, Zhang XM. An updated assessment of microglia depletion:

current concepts and future directions. Mol Brain. 2017;10:25.

34. Wu YW, Pham TN, Danielsen B, Towner D, Smith L, Johnston SC. Nighttime

delivery and risk of neonatal encephalopathy. Am J Obstet Gynecol. 2011;

204:37 e31-6.

35. Mirza MA, Ritzel R, Xu Y, McCullough LD, Liu F. Sexually dimorphic

outcomes and inflammatory responses in hypoxic-ischemic

encephalopathy. J Neuroinflammation. 2015;12:32.

36. Hill CA, Fitch RH. Sex differences in mechanisms and outcome of neonatal

hypoxia-ischemia in rodent models: implications for sex-specific

neuroprotection in clinical neonatal practice. Neurol Res Int. 2012;2012:

867531.

37. Smith AL, Alexander M, Rosenkrantz TS, Sadek ML, Fitch RH. Sex differences

in behavioral outcome following neonatal hypoxia ischemia: insights from a

clinical meta-analysis and a rodent model of induced hypoxic ischemic

brain injury. Exp Neurol. 2014;254:54–67.

38. Schwarz JM, Sholar PW, Bilbo SD. Sex differences in microglial colonization

of the developing rat brain. J Neurochem. 2012;120:948–63.

39. Weinhard L, Neniskyte U, Vadisiute A, di Bartolomei G, Aygun N, Riviere L,

et al. Sexual dimorphism of microglia and synapses during mouse postnatal

development. Dev Neurobiol. 2018;78:618–26.

Tsuji et al. Journal of Neuroinflammation

(2020) 17:111

40. Yanguas-Casas N, Crespo-Castrillo A, de Ceballos ML, Chowen JA, Azcoitia I,

Arevalo MA, et al. Sex differences in the phagocytic and migratory activity

of microglia and their impairment by palmitic acid. Glia. 2018;66:522–37.

41. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, et al. Competitive

repopulation of an empty microglial niche yields functionally distinct

subsets of microglia-like cells. Nat Commun. 2018;9:4845.

42. Rice. JE, Vannucci. RC, Brierley. JB. The influence of immaturity on hypoxicischemic brain damage in the rat. Ann Neurol. 1981;9:131-41.

43. Winerdal M, Winerdal ME, Wang YQ, Fredholm BB, Winqvist O, Aden U.

Adenosine A1 receptors contribute to immune regulation after neonatal

hypoxic ischemic brain injury. Purinergic Signal. 2016;12:89–101.

44. Di Martino E, Bocchetta E, Tsuji S, Mukai T, Harris RA, Blomgren K, et al.

Defining a time window for neuroprotection and glia modulation by

caffeine after neonatal hypoxia-ischaemia. Mol Neurobiol. 2020. https://doi.

org/10.1007/s12035-020-01867-9.

45. Han W, Sun Y, Wang X, Zhu C, Blomgren K. Delayed, long-term

administration of the caspase inhibitor Q-VD-OPh reduced brain injury

induced by neonatal hypoxia-ischemia. Dev Neurosci. 201; 36:64-72.

46. Winerdal M, Urmaliya V, Winerdal ME, Fredholm BB, Winqvist O, Aden U.

Single dose caffeine protects the neonatal mouse brain against hypoxia

ischemia. PLoS One. 2017;12:e0170545.

47. Yeung ST, Myczek K, Kang AP, Chabrier MA, Baglietto-Vargas D, Laferla FM.

Impact of hippocampal neuronal ablation on neurogenesis and cognition in

the aged brain. Neuroscience. 2014;259:214–22.

48. Demarest TG, Waite EL, Kristian T, Puche AC, Waddell J, McKenna MC, et al.

Sex-dependent mitophagy and neuronal death following rat neonatal

hypoxia-ischemia. Neuroscience. 2016;335:103–13.

49. Zhang Y, Milatovic D, Aschner M, Feustel PJ, Kimelberg HK. Neuroprotection

by tamoxifen in focal cerebral ischemia is not mediated by an agonist

action at estrogen receptors but is associated with antioxidant activity. Exp

Neurol. 2007;204:819–27.

50. Wakade C, Khan MM, De Sevilla LM, Zhang QG, Mahesh VB, Brann DW.

Tamoxifen neuroprotection in cerebral ischemia involves attenuation of

kinase activation and superoxide production and potentiation of

mitochondrial superoxide dismutase. Endocrinology. 2008;149:367–79.

51. Sosna J, Philipp S, Albay R 3rd, Reyes-Ruiz JM, Baglietto-Vargas D, LaFerla

FM, et al. Early long-term administration of the CSF1R inhibitor PLX3397

ablates microglia and reduces accumulation of intraneuronal amyloid,

neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse

model of Alzheimer’s disease. Mol Neurodegener. 2018;13:11.

52. Kokona D, Ebneter A, Escher P, Zinkernagel MS. Colony-stimulating factor 1

receptor inhibition prevents disruption of the blood-retina barrier during

chronic inflammation. J Neuroinflammation. 2018;15:340.

53. Faustino JV, Wang X, Johnson CE, Klibanov A, Derugin N, Wendland MF,

et al. Microglial cells contribute to endogenous brain defenses after acute

neonatal focal stroke. J Neurosci. 2011;31:12992–3001.

54. Bruttger J, Karram K, Wortge S, Regen T, Marini F, Hoppmann N, et al.

Genetic cell ablation reveals clusters of local self-renewing microglia in the

mammalian central nervous system. Immunity. 2015;43:92–106.

55. Demarest TG, Schuh RA, Waddell J, McKenna MC, Fiskum G. Sex-dependent

mitochondrial respiratory impairment and oxidative stress in a rat model of

neonatal hypoxic-ischemic encephalopathy. J Neurochem. 2016;137:714–29.

56. Zhu C, Xu F, Wang X, Shibata M, Uchiyama Y, Blomgren K, et al. Different

apoptotic mechanisms are activated in male and female brains after

neonatal hypoxia-ischaemia. J Neurochem. 2006;96:1016–27.

57. Weis SN, Toniazzo AP, Ander BP, Zhan X, Careaga M, Ashwood P, et al.

Autophagy in the brain of neonates following hypoxia-ischemia shows sexand region-specific effects. Neuroscience. 2014;256:201–9.

58. Kerr N, Dietrich DW, Bramlett HM, Raval AP. Sexually dimorphic microglia

and ischemic stroke. CNS Neurosci Ther. 2019;25:1308–17.

59. Feng Y, Fratkins JD, LeBlanc MH. Estrogen attenuates hypoxic-ischemic

brain injury in neonatal rats. Eur J Pharmacol. 2005;507:77–86.

60. Nuñez J, Yang Z, Jiang Y, Grandys T, Mark I. SW. L. 17β-estradiol protects the

neonatal brain from hypoxia-ischemia. Exp Neurol. 2007;208:269–76.

61. Cikla U, Chanana V, Kintner DB, Udho E, Eickhoff J, Sun W, et al. ERalpha

signaling is required for TrkB-mediated hippocampal neuroprotection in

female neonatal mice after hypoxic ischemic encephalopathy. eNeuro. 2016;

3.

62. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS, et al.

The role of inflammation in perinatal brain injury. Nat Rev Neurol. 2015;11:

192–208.

Page 15 of 15

63. Lehrmann E, Kiefer R, Christensen T, Toyka KV, Zimmer J, Diemer NH, et al.

Microglia and macrophages are major sources of locally produced

transforming growth factor-beta1 after transient middle cerebral artery

occlusion in rats. Glia. 1998;24:437–48.

64. Recasens M, Shrivastava K, Almolda B, Gonzalez B, Castellano B. Astrocytetargeted IL-10 production decreases proliferation and induces a

downregulation of activated microglia/macrophages after PPT. Glia. 2019;67:

741–58.

65. Jaber SM, Bordt EA, Bhatt NM, Lewis DM, Gerecht S, Fiskum G, et al. Sex

differences in the mitochondrial bioenergetics of astrocytes but not

microglia at a physiologically relevant brain oxygen tension. Neurochem Int.

2018;117:82–90.

66. Chanana V, Tumturk A, Kintner D, Udho E, Ferrazzano P, Cengiz P. Sex

differences in mouse hippocampal astrocytes after in-vitro ischemia. J Vis

Exp. 206.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る