リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Characterization of MORN2 stability and regulatory function in LC3-associated phagocytosis in macrophages」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Characterization of MORN2 stability and regulatory function in LC3-associated phagocytosis in macrophages

Morita, Maya Kajiye, Mayu Sakurai, Chiye Kubo, Shuichi Takahashi, Miki Kinoshita, Daiki Hori, Naohiro Hatsuzawa, Kiyotaka 鳥取大学 DOI:10.1242/bio.051029

2020.06

概要

Microtubule-associated protein A1/B1-light chain 3 (LC3)-associated phagocytosis (LAP) is a type of non-canonical autophagy that regulates phagosome maturation in macrophages. However, the role and regulatory mechanism of LAP remain largely unknown. Recently, the membrane occupation and recognition nexus repeat-containing-2 (MORN2) was identified as a key component of LAP for the efficient formation of LC3-recruiting phagosomes. To characterize MORN2 and elucidate its function in LAP, we established a MORN2-overexpressing macrophage line. At a steady state, MORN2 was partially cleaved by the ubiquitin-proteasome system. MORN2 overexpression promoted not only LC3-II production but also LAP phagosome (LAPosome) acidification during Escherichia coli uptake. Furthermore, the formation of LAPosomes containing the yeast cell wall component zymosan was enhanced in MORN2-overexpressing cells and depended on reactive oxygen species (ROS). Finally, MORN2-mediated LAP was regulated by plasma membrane-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) such as SNAP-23 and syntaxin 11. Taken together, these findings demonstrate that MORN2, whose expression is downregulated via proteasomal digestion, is a limiting factor for LAP, and that membrane trafficking by SNARE proteins is involved in MORN2-mediated LAP.

この論文で使われている画像

参考文献

Abnave, P., Mottola, G., Gimenez, G., Boucherit, N., Trouplin, V., Torre, C.,

Conti, F., Ben Amara, A., Lepolard, C., Djian, B. et al. (2014). Screening in

planarians identifies MORN2 as a key component in LC3-associated

phagocytosis and resistance to bacterial infection. Cell Host Microbe. 16,

338-350. doi:10.1016/j.chom.2014.08.002

Akagi, T., Sasai, K. and Hanafusa, H. (2003). Refractory nature of normal human

diploid fibroblasts with respect to oncogene-mediated transformation. Proc. Natl.

Acad. Sci. USA 100, 13567-13572. doi:10.1073/pnas.1834876100

Alileche, A., Squires, R. C., Muehlbauer, S. M., Lisanti, M. P. and Brojatsch, J.

(2006). Mitochondrial impairment is a critical event in anthrax lethal toxininduced cytolysis of murine macrophages. Cell Cycle. 5, 100-106. doi:10.4161/

cc.5.1.2283

Choi, Y.-J., Hwang, K.-C., Park, J.-Y., Park, K.-K., Kim, J.-H., Park, S.-B., Hwang,

S., Park, H., Park, C. and Kim, J.-H. (2010). Identification and characterization of

a novel mouse and human MOPT gene containing MORN-motif protein in testis.

Theriogenology 73, 273-281. doi:10.1016/j.theriogenology.2009.09.010

Desai, D. D., Harbers, S. O., Flores, M., Colonna, L., Downie, M. P., Bergtold, A.,

Jung, S. and Clynes, R. (2007). Fcγ receptor IIB on dendritic cells enforces

peripheral tolerance by inhibiting effector T cell responses. J. Immunol. 178,

6217-6226. doi:10.4049/jimmunol.178.10.6217

Fabunmi, R. P., Wigley, W. C., Thomas, P. J. and DeMartino, G. N. (2000). Activity

and regulation of the centrosome-associated proteasome. J. Biol. Chem. 275,

409-413. doi:10.1074/jbc.275.1.409

Hatsuzawa, K., Hashimoto, H., Hashimoto, H., Arai, S., Tamura, T., HigaNishiyama, A. and Wada, I. (2009). Sec22b is a negative regulator of

phagocytosis in macrophages. Mol. Biol. Cell 20, 4435-4443. doi:10.1091/mbc.

e09-03-0241

Heckmann, B. L. and Green, D. R. (2019). LC3-associated phagocytosis at a

glance. J. Cell Sci. 132, jcs222984. doi:10.1242/jcs.222984

Hong, W. and Lev, S. (2014). Tethering the assembly of SNARE complexes. Trends

Cell Biol. 24, 35-43. doi:10.1016/j.tcb.2013.09.006

Huang, J., Canadien, V., Lam, G. Y., Steinberg, B. E., Dinauer, M. C., Magalhaes,

M. A., Glogauer, M., Grinstein, S. and Brumell, J. H. (2009). Activation of

antibacterial autophagy by NADPH oxidases. Proc. Natl. Acad. Sci. USA 106,

6226-6231. doi:10.1073/pnas.0811045106

Jahn, R. and Scheller, R. H. (2006). SNAREs–engines for membrane fusion. Nat.

Rev. Mol. Cell Biol. 7, 631-643. doi:10.1038/nrm2002

Jutras, I. and Desjardins, M. (2005). Phagocytosis: at the crossroads of innate and

adaptive immunity. Annu. Rev. Cell Dev. Biol. 21, 511-527. doi:10.1146/annurev.

cellbio.20.010403.102755

Kinoshita, D., Sakurai, C., Morita, M., Tsunematsu, M., Hori, N. and Hatsuzawa,

K. (2019). Syntaxin 11 regulates the stimulus-dependent transport of Toll-like

receptor 4 to the plasma membrane by cooperating with SNAP-23 in

macrophages. Mol. Biol. Cell 30, 1085-1097. doi:10.1091/mbc.E18-10-0653

Kravtsova-Ivantsiv, Y., Shomer, I., Cohen-Kaplan, V., Snijder, B., SupertiFurga, G., Gonen, H., Sommer, T., Ziv, T., Admon, A., Naroditsky, I. et al.

(2015). KPC1-mediated ubiquitination and proteasomal processing of NFkappaB1 p105 to p50 restricts tumor growth. Cell 161, 333-347. doi:10.1016/j.

cell.2015.03.001

Ligeon, L.-A., Moreau, K., Barois, N., Bongiovanni, A., Lacorre, D.-A.,

Werkmeister, E., Proux-Gillardeaux, V., Galli, T. and Lafont, F. (2014). Role

of VAMP3 and VAMP7 in the commitment of Yersinia pseudotuberculosis to LC3-

associated pathways involving single- or double-membrane vacuoles. Autophagy

10, 1588-1602. doi:10.4161/auto.29411

Ma, J., Becker, C., Lowell, C. A. and Underhill, D. M. (2012). Dectin-1-triggered

recruitment of light chain 3 protein to phagosomes facilitates major

histocompatibility complex class II presentation of fungal-derived antigens.

J. Biol. Chem. 287, 34149-34156. doi:10.1074/jbc.M112.382812

Martinez, J., Malireddi, R. K., Lu, Q., Cunha, L. D., Pelletier, S., Gingras, S.,

Orchard, R., Guan, J.-L., Tan, H., Peng, J. et al. (2015). Molecular

characterization of LC3-associated phagocytosis reveals distinct roles for

Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893-906. doi:10.

1038/ncb3192

Matte, C., Casgrain, P. A., Seguin, O., Moradin, N., Hong, W. J. and Descoteaux,

A. (2016). Leishmania major promastigotes evade LC3-associated phagocytosis

through the action of GP63. PLoS Pathog. 12, e1005690. doi:10.1371/journal.

ppat.1005690

Morita, M., Sawaki, K., Kinoshita, D., Sakurai, C., Hori, N. and Hatsuzawa, K.

(2017). Quantitative analysis of phagosome formation and maturation using an

Escherichia coli probe expressing a tandem fluorescent protein. J. Biochem. 162,

309-316. doi:10.1093/jb/mvx034

Peng, H., Yang, J., Li, G., You, Q., Han, W., Li, T., Gao, D., Xie, X., Lee, B.-H., Du,

J. et al. (2017). Ubiquitylation of p62/sequestosome1 activates its autophagy

receptor function and controls selective autophagy upon ubiquitin stress. Cell Res.

27, 657-674. doi:10.1038/cr.2017.40

Ra, E. A., Lee, T. A., Won Kim, S., Park, A., Choi, H. J., Jang, I., Kang, S., Hee

Cheon, J., Cho, J. W., Eun Lee, J. et al. (2016). TRIM31 promotes Atg5/Atg7-

independent autophagy in intestinal cells. Nat. Commun. 7, 11726. doi:10.1038/

ncomms11726 Romao, S., Gasser, N., Becker, A. C., Guhl, B., Bajagic, M., Vanoaica, D.,

Ziegler, U., Roesler, J., Dengjel, J., Reichenbach, J. et al. (2013). Autophagy

proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen

processing. J. Cell Biol. 203, 757-766. doi:10.1083/jcb.201308173

Sakurai, C., Hashimoto, H., Nakanishi, H., Arai, S., Wada, Y., Sun-Wada, G. H.,

Wada, I. and Hatsuzawa, K. (2012). SNAP-23 regulates phagosome formation

and maturation in macrophages. Mol. Biol. Cell 23, 4849-4863. doi:10.1091/mbc.

e12-01-0069

Sakurai, C., Itakura, M., Kinoshita, D., Arai, S., Hashimoto, H., Wada, I. and

Hatsuzawa, K. (2018). Phosphorylation of SNAP-23 at Ser95 causes a structural

alteration and negatively regulates Fc receptor-mediated phagosome formation

and maturation in macrophages. Mol. Biol. Cell 29, 1753-1762. doi:10.1091/mbc.

E17-08-0523

Sanjuan, M. A., Dillon, C. P., Tait, S. W. G., Moshiach, S., Dorsey, F., Connell, S.,

Komatsu, M., Tanaka, K., Cleveland, J. L., Withoff, S. et al. (2007). Toll-like

receptor signalling in macrophages links the autophagy pathway to phagocytosis.

Nature 450, 1253-1257. doi:10.1038/nature06421

Tam, J. M., Mansour, M. K., Khan, N. S., Seward, M., Puranam, S., Tanne, A.,

Sokolovska, A., Becker, C. E., Acharya, M., Baird, M. A. et al. (2014).

Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal

activity in macrophages. J. Infect. Dis. 210, 1844-1854. doi:10.1093/infdis/

jiu290

Vora, S. M. and Phillips, B. (2016). The benefits of local depletion: The centrosome

as a scaffold for ubiquitin-proteasome-mediated degradation. Cell Cycle 15,

2124-2134. doi:10.1080/15384101.2016.1196306

Underhill, D. M. and Goodridge, H. S. (2012). Information processing during

phagocytosis. Nat. Rev. Immunol. 12, 492-502. doi:10.1038/nri3244

Upadhyay, S. and Philips, J. A. (2019). LC3-associated phagocytosis: host

defense and microbial response. Curr. Opin. Immunol. 60, 81-90. doi:10.1016/j.

coi.2019.04.012

Wigley, W. C., Fabunmi, R. P., Lee, M. G., Marino, C. R., Muallem, S.,

DeMartino, G. N. and Thomas, P. J. (1999). Dynamic association of

proteasomal machinery with the centrosome. J. Cell Biol. 145, 481-490.

doi:10.1083/jcb.145.3.481

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る