リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Human metaphase chromosome consists of randomly arranged chromatin fibres with up to 30-nm diameter」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Human metaphase chromosome consists of randomly arranged chromatin fibres with up to 30-nm diameter

Wako, Toshiyuki 大阪大学

2020.06.02

概要

During cell division, mitotic chromosomes assemble and are equally distributed into two new daughter cells. The chromosome organisation of the two chromatids is essential for even distribution of genetic materials. Although the 11-nm fibre or nucleosome structure is well-understood as a fundamental fibrous structure of chromosomes, the reports on organisation of 30-nm basic chromatin fibres have been controversial, with debates on the contribution of 30-nm or thicker fibres to the higher order inner structure of chromosomes. Here, we used focused ion beam/scanning electron microscopy (FIB/SEM) to show that both 11-nm and 30-nm fibres are present in the human metaphase chromosome, although the higher-order periodical structure could not be detected under the conditions employed. We directly dissected the chromosome every 10-nm and observed 224 cross-section SEM images. We demonstrated that the chromosome consisted of chromatin fibres of an average diameter of 16.9-nm. The majority of the chromatin fibres had diameters between 5 and 25-nm, while those with 30-nm were in the minority. The reduced packaging ratio of the chromatin fibres was detected at axial regions of each chromatid. Our results provide a strong basis for further discussions on the chromosome higher-order structure.

この論文で使われている画像

参考文献

1. Alberts, B. et al. Molecular Biology of Te Cell, 6th ed., Garland Science, 214–215 (2015).

2. Luger, K. et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

3. Inaga, S. et al. In: Fukui, K. & Ushiki, T. eds, Chromosome Nanoscience and Technology, 93–104 (CRC Press, Boca Raton, 2007).

4. Finch, J. T. & Klug, A. Solenoidal model for superstructure in chromatin. Proc. Natl. Acad. Sci. USA 73, 1897–1901 (1976).

5. Schalch, T. et al. X-ray structure of a tetranucleosome and its implications for the chromatin fbre. Nature 436, 138–141 (2005).

6. Eltsov, M. et al. Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fbers in mitotic chromosomes in situ. Proc. Natl. Acad. Sci. USA 105, 19732–19737 (2008).

7. Ohnuki, Y. Demonstration of the spiral structure of human chromosomes. Nature 208, 916–917 (1965).

8. Ohnuki, Y. Structure of chromosomes. I. Morphological studies of the spiral structure of human somatic chromosomes. Chromosoma 25, 402–428 (1968).

9. Sedat, J. & Manuelidis, L. A direct approach to the structure of eukaryotic chromosomes. Cold Spring Harb. Symp. Quant. Biol. 42, 331–350 (1978).

10. Gibcus, J. H. et al. Pathway for mitotic chromosome formation. Science 359, eaao6135 (2018).

11. Chicano, A. et al. Frozen-hydrated chromatin from metaphase chromosomes has an interdigitated multilayer structure. EMBO J. 38, e99769 (2019).

12. Ou, H. D. et al. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017).

13. Schroeder-Reiter, E., Pérez-Willard, F., Zeile, U. & Wanner, G. Focused ion beam (FIB) combined with high resolution scanning electron microscopy: A promising tool for 3D analysis of chromosome architecture. J. Struct. Biol. 165, 97–106 (2009).

14. Hamano, T. et al. Chromosome interior observation by focused ion beam/scanning electron microscopy (FIB/SEM) using ionic liquid technique. Microsc. Microanal. 20, 1340–1347 (2014).

15. Sasakura, S. et al. Structural analysis of human chromosome by FIB/SEM. Chromo. Sci. 19, 25–31 (2016).

16. McGowan-Jordan, J., Simons, A. & Schmid, M. (eds.) An international system for human cytogenomic nomenclature. (S. Karger, Basel., 2016).

17. Genome Reference Consortium. Genome Reference Consortium Human Build 38 patch release 13 (GRCh38.p13), NCBI https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39 (2019).

18. Song, F. et al. Cryo-EM study of the chromatin fber reveals a double helix twisted by tetranucleosomal units. Science 344, 376–380 (2014).

19. Ohno, M. et al. Sub-nucleosomal genome structure reveals distinct nucleosome folding motifs. Cell 176, 520–534 (2019).

20. Maeshima, K. & Laemmli, U. K. A two-step scafolding model for mitotic chromosome assembly. Dev. Cell 4, 467–480 (2003).

21. Naumova, N. et al. Organization of the mitotic chromosome. Science 22, 948–953 (2013).

22. Bustamante, F. O. et al. Correlating the genetic and physical map of barley chromosome 3H revealed limitations of the FISH-based mapping of nearby single-copy probes caused by the dynamic structure of metaphase chromosomes. Cytogenet Genome Res 152, 90–96 (2017).

23. Poonperm, R. et al. Chromosome scafold is a double-stranded assembly of scafold proteins. Sci. Rep. 5, 11916 (2015).

24. Fukui, K. Contribution of nanotechnology to chromosome science. Chromo. Sci. 19, 51–56 (2016).

25. Greilhuber, J. Why plant chromosomes do not show G-bands. Teor Appl Genet 50, 121–124 (1977).

26. Mascher, N. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).

27. Steinmüller, E., Schleiermache, E. & Scherthan, H. Direct detection of repetitive, whole chromosome paint and telomere DNA probes by immunogold electron microscopy. Chromosome Res. 1, 45–51 (1993).

28. Fukushi, D. & Ushiki, T. Te structure of C-banded human metaphase chromosomes as observed by atomic force microscopy. Arch. Histol. Cytol. 68, 81–87 (2005).

29. Dugan, L. C. et al. Polymerase chain reaction-based suppression of repetitive sequences in whole chromosome painting probes for FISH. Chromosome Res. 13, 27–32 (2005).

30. Ghazizadeh, M. et al. A novel technique for observing the internal ultrastructure of human chromosomes with known karyotype. Microsc. Microanal. 14, 357–361 (2008).

31. Ioannou, D. et al. Quantum dots as new-generation fuorochromes for FISH: an appraisal. Chromosome Res. 17, 519–530 (2009).

32. Suto, Y. et al. Sensitive and rapid detection of centromeric alphoid DNA in human metaphase chromosomes by PNA fuorescence in situ hybridization and its application to biological radiation dosimetry. Cytologia 77, 261–267 (2012).

33. Passamani, P. Z. et al. Protocol for chromosome-specifc probe construction using PRINS, micromanipulation and DOP-PCR techniques. An. Acad. Bras. Cienc. 90, 41–47 (2018).

34. Fukui, K. & Kakeda, K. Quantitative karyotyping of barley chromosomes by image analysis methods. Genome 33, 450–458 (1990).

35. Fukui, K., Kamisugi, Y. & Sakai, F. Physical mapping of 5S rDNA loci by direct-cloned biotinylated probes in barley chromosomes. Genome 37, 105–111 (1993).

36. Iwano, M., Fukui, K., Takaichi, S. & Isogai, A. Globular and fbrous structure in barley chromosomes revealed by high-resolution scanning electron microscopy. Chromosome Res. 5, 341–349 (1997).

37. Lysák, M. A. et al. Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.). Chromosome Res. 7, 431–444 (1999).

38. Hayashihara, K. et al. Isolation method for human metaphase chromosomes. Protoc. Exch. https://doi.org/10.1038/nprot.2008.166 (2008).

39. Matsumoto, K. Syntheses and chemical properties platinum blues. J. Synth. Org. Chem. Jpn 47, 660–668 (1989).

40. Nishiyama, H. et al. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride flm. J. Struct. Biol. 169, 438–449 (2010).

41. Schneider, C. A. et al. NIH Image to ImageJ: 25 years of image analysis. Nat. Method. 9, 671–675 (2012).

42. Legland, D. et al. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinf. 32, 3532–3534 (2016).

43. Steger, C. An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. Machine Intel. 20, 113–125 (1998).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る