リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Formation and mobility of soil organic carbon in a buried humic horizon of a volcanic ash soil」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Formation and mobility of soil organic carbon in a buried humic horizon of a volcanic ash soil

Wijesinghea, Jithya Nawodi Koarashi, Jun 小嵐, 淳 コアラシ, ジュン Atarashi-Andoh, Mariko 安藤, 麻里子 アタラシ-アンドウ, マリコ Saito-Kokubu, Yoko 國分, 陽子 サイトウ-コクブ, ヨウコ Yamaguchi, Noriko 山口, 紀子 ヤマグチ, ノリコ Sase, Takashi サセ, タカシ Hosono, Mamoru ホソノ, マモル Inoue, Yudzuru 井上, 弦 イノウエ, ユヅル Mori, Yuki 森, 裕樹 モリ, ユウキ Hiradate, Syuntaro 平舘, 俊太郎 ヒラダテ, シュンタロウ 九州大学

2020.09.01

概要

A buried humic horizon (^<14>C age between 5.4 to 6.8 kyr BP) of a volcanic ash soil in Aomori, Japan, which was collected from the depth between 147 and 187 cm at 5 cm-interval (total 8 sub-horizon s

この論文で使われている画像

参考文献

444

Andersson, S., Nilsson, I., Valeur I., 1999. Influence of dolomite lime on DOC and

445

DON leaching in a forest soil. Biogeochemistry 47, 297-317.

446

Conte, P., Piccolo, A., Van Lagen, B., Buurman, P., De Jager, P.A., 1997. Quantitative

447

aspects of solid-state 13C-NMR spectra of humic substances from soils of volcanic

448

systems. Geoderma 80, 327-338.

449

450

451

452

453

454

455

Dahlgren, R.A., Saigusa, M., Ugolini, F. C., 2004. The nature, properties and

management of volcanic soils. Adv. Agron. 82, 113-182.

Eswaran, H., Vandemberg, E., Reich, P., 1993. Organic Carbon in soils of the world.

Soil Sci. Soc. Am. J. 57, 192-194.

Golchin, A., Oades, J.M., Skjemstad, J.O., Clarke, P., 1994. Soil structure and carbon

cycling. Aust. J. Soil Res. 32, 1043-1068.

Hayakawa, Y., 1985. Pyroclastic geology of Towada volcano. Bulletin of the

456

Earthquake Research Institute, University of Tokyo 60, 507-592 in: Inoue, Y.,

457

Hiradate, S., Sase, T., Hosono, M., Morita, S., Matsuzaki, H., 2011. Using 14 C

458

dating of stable humin fractions to assess upbuilding pedogenesis of a buried

459

Holocene humic horizon, Towada volcano, Japan. Geoderma 167-168, 85-90.

460

Hayakawa, Y., 1983. Chuseri tephra formation from Towada volcano, Japan. Bulletin

461

of the Volcanological Society of Japan, Section 28, 263-273 (in Japanese with

462

English abstract) in: Inoue, Y., Hiradate, S., Sase, T., Hosono, M., Morita, S.,

463

Matsuzaki, H., 2011. Using 14 C dating of stable humin fractions to assess

19

464

upbuilding pedogenesis of a buried Holocene humic horizon, Towada volcano,

465

Japan. Geoderma 167-168, 85-90.

466

467

International Humic Substances Society. http://www.humic-substances.org/what-arehumic-substances/ (accessed 11 November, 2019).

468

Hiradate, S., Nakadai, T., Shindo, H., Yoneyama, T., 2004. Carbon source of humic

469

substances in some Japanese volcanic ash soils determined by carbon stable

470

isotopic ratio, 𝛿13C. Geoderma 119, 133-141.

471

472

Hiradate, S., Yonezawa, T., Takesako, H., 2006. Isolation and purification of

hydrophilic fulvic acids by precipitation. Geoderma 132, 196-205.

473

Hiradate, S., Yonezawa, T., Takesako, H., 2007. Fine fractionation and purification of

474

the fulvic acid fraction using adsorption and precipitation procedure. J. Soil Sci.

475

Plant Nutr. 57, 413-419.

476

Iimura, Y., Ohtani, T., Chersich, S., Tani, M., Fujitake, N., 2012. Characterization of

477

DAX-8 adsorbed soil fulvic acid fractions by various types of analyses. J. Soil

478

Sci. Plant Nutr. 58, 404-415.

479

Inoue, Y., Hiradate, S., Sase, T., Hosono, M., Morita, S., Matsuzaki, H., 2011. Using

480

14

481

Holocene humic horizon, Towada volcano, Japan. Geoderma 167-168, 85-90.

482

Kaiser, K., Guggenberger, G., Haumaier, L., Zech, W., 2002. The composition of

C dating of stable humin fractions to assess upbuilding pedogenesis of a buried

483

organic matter in forest soil solutions as revealed by 1H-NMR spectroscopy:

484

changes induced by seasons and passage through the mineral soil. Org. Geochem.

485

33, 307-318.

486

Kaiser, K., Guggenberger, G., Haumaier, L., 2004. Changes in dissolved lignin-

487

derived phenols, neutral sugars, uronic acids, and amino sugars with depth in

488

forested Haplic Arenosols and Rendzic Leptosols. Biogeochemistry 70, 135-151.

20

489

Katsumi, N., Yonebayashi, K., Fujitake, N., Okazaki, M., 2015. Relationship between

490

stable Carbon and Nitrogen isotope ratios of humic acids extracted from Andisols

491

and non Andisols. Catena 127, 214-221.

492

Kramer, M.G., Sollins, P., Sletten, R.S., Swart, P.K., 2003. N isotope fractionation

493

and measures of organic matter alteration during decomposition. Ecology 84-8,

494

2021-2025.

495

Kristiansen, S.M., Dalsgaard, K., Holst, M.K., Aaby, B., Heinemeier, J., 2003. Dating

496

of prehistoric burial mounds by 14C analysis of soil organic matter fractions.

497

Radiocarbon 45 (1), 101-112.

498

Krull, E.S., Bestland, E.A., Gates, W.P., 2002. Soil organic matter decomposition and

499

turnover in a tropical ultisol: Evidence from δ13C, δ15N and geochemistry.

500

Radiocarbon 44 (1), 93-112.

501

502

Machida, H., Arai, F., 2003. Atlas of tephra in and around Japan [revised edition].

University of Tokyo Press, Tokyo (in Japanese).

503

Machida, H., Arai, F., Moriwaki, H., 1981. Two Korean tephras, Holocene markers

504

in the Sea of Japan and the Japan Islands. Kagaku 51, 562-569 (in Japanese).

505

Maie, N., Watanabe, A., Hayamizu, K., Kimura, M., 2002. Comparison of chemical

506

characteristics of Type A humic acids extracted from subsoils of paddy fields an

507

surface ando soils. Geoderma 106, 1-19.

508

Maie, N., Watanabe, A., Kimura, M., 2004. Chemical characteristics and potential

509

source of fulvic acids leached from the plow layer of paddy soil. Geoderma 120,

510

309-323.

511

Marin-Spiotta, E., Silver, W., Swanston, C.W., Ostertag, R., 2009. Soil organic matter

512

dynamics during 80 years of reforestation of tropical pastures. Glob. Chang. Biol.

513

15, 1584-1597.

21

514

515

516

517

Mcgill, B., Cole, C.V., 1981. Comparative aspects of cycling of organic C, N, S and

P through soil organic matter. Geoderma 26, 267-286.

Miltner, A., Bombach, P., Schmidt-Brucken, B., Kastner, M., 2012. SOM genesis:

microbial biomass as a significant source. Biogeochemistry 111, 41-55.

518

Nilsson, S.I., Andersson, S., Valeur, I., Persson, T., Bergholm, J., Wire´n, A., 2001.

519

Influence of dolomite lime on leaching and storage of C, N and S in a Spodosol

520

under Norway spruce (Picea abies (L.) Karst.). For. Ecol. Manage. 146, 55-73.

521

Oike, S., Shoji, S., 1974. 14C age of the Towada-b ash fall: 14C age of the Quaternary

522

523

deposits in Japan (96). Earth Sci. (Chikyu Kagaku) 28, 99-100 (in Japanese).

Panichini, M., Matus, F., Mora, M.L., Godoy, R., Bolan, N.S., Rumpel, C., 2012.

524

Carbon distribution in top and subsoil horizons of two contrasting andisols under

525

pasture or forest. Eur. J. Soil Sci. 63 (5), 616-624.

526

Pessenda, L.C.R., Gouveia, S.E.M., Aravena, R., 2001. Radiocarbon dating of total

527

soil organic matter and its comparison with 14C ages of fossil charcoal.

528

Radiocarbon 43 (2B), 595-601.

529

Saito-Kokubu, Y., Matsubara, A., Miyake, M., Nishizawa, A., Ohwaki, Y., Nishio, T.,

530

Sanada, K., Hanaki, T., 2015. Progress on multi-nuclide AMS of JAEA-AMS-

531

TONO. Nucl. Instrum. Methods Phys. Res. B 361, 48-53.

532

Shindo, H., Honna, T., Yamamoto, S., Honma, H., 2004. Contribution of charred

533

plant fragments to soil organic carbon in Japanese volcanic ash soils containing

534

black humic acids. Org. Geochem. 35, 235-241.

535

536

537

538

Stevenson, F. J., 1994. Humus Chemistry: Genesis, Composition, Reactions, second

ed. Wiley, New York.

Tonneijck, F.H., Plicht, J., Jansen, B., Verstraten, J.M., Hooghiemstra, H., 2006.

Radiocarbon dating of soil organic matter fractions in andosols in Northern

22

539

540

Ecuador. Radiocarbon 48 (3), 337-353.

Wacker, L., Němec, M., Bourquin, J., 2010. A revolutionary graphitisation system:

541

Fully automated, compact and simple. Nucl. Instrum. Methods Phys. Res. B 268,

542

931-934.

543

Wada, E., Ishii, R., Aita, M.N., Ogawa, N.O., Kohzu, A., Hyodo, F., Yamada, Y.,

544

2013. Possible ideas on carbon and nitrogen trophic fractionation of food chains: a

545

new aspects of food chain stable isotope analysis in Lake Biwa, lake Baikal, and

546

the Mongolian grasslands. Ecol. Res. 28, 173-181.

547

Watanabe, A., Fujitake, N., 2008. Comparability of composition of carbon functional

548

groups in humic acids between inverse-gated decoupling and Cross Polarization

549

Magic Angle Spinning13C Nuclear Magnetic Resonance techniques. Anal. Chim.

550

Acta 618, 110-115.

551

Wynn, J.G., 2007. Carbon isotope fractionation during decomposition of organic

552

matter in soils and paleosols: Implications for paleoecological interpretations of

553

paleosols. Palaeogeogr. Palaeoclimatol. Palaeoecol. 251, 437-448.

554

Yoneyama, T., Nakanishi, Y., Morita, A., Liyanage, B.C., 2001. δ13C values of

555

organic carbon in cropland and forest soils in Japan. Soil Sci. Plant Nutr. 47, 17-

556

26.

23

557

Figure captions

558

Fig. 1. Location of sampling site illustrated on isopach map of To-Cu and To-Nb

559

tephras based on Machida and Arai (2003) (a) and sampling position in the soil

560

profile (b). To-a: Towada-a, To-b: Towada-b, To-Cu: Towada-Chuseri, To-Nb:

561

Towada-Nambu. The deposition ages of To-a* and To-b** are calculated 14C ages and

562

cited from Machida et al. (1981) and Oike and Shoji (1974), respectively. The

563

deposition ages of To-Cu*** and To-Nb*** are non-calculated 14C ages and cited from

564

Hayakawa (1983;1985).

565

566

Fig. 2. Relationship between δ13C and δ15N values of humin, humic acid (HA),

567

hydrophilic fulvic acid (FA1 and FA2), and hydrophobic fulvic acid (FA3 and FAIHSS)

568

fractions prepared from eight sub-horizon samples from a buried humic horizon

569

occurred between 147 and 187 cm depth of an Andosol near Towada volcano.

570

The δ13C and δ15N values of FA2 (152 - 157 cm and 162 - 167 cm depths) and FAIHSS

571

(172 - 177 cm depth) were not detected due to low yield.

572

573

Fig. 3. Solid-state cross polarization magic angle spinning 13C nuclear magnetic

574

resonance spectra of hydrophilic fulvic acid (FA1 and FA2), hydrophobic fulvic acid

575

(FA3 and FAIHSS), and humic acid (HA) fractions prepared from a sub-horizon sample

576

between 162 and 167 cm depth from a buried humic horizon occurred between 147

577

and 187 cm depth of an Andosol near Towada volcano.

578

579

Fig. 4. Comparison between deposition age of sub-horizon (●: Inoue et al., 2011) and

580

14

C age (○) of (a) humin, (b) humic acid (HA), (c and d) hydrophilic fulvic acid (c:

24

581

FA1, d: FA2), and (e and f) hydrophobic fulvic acid (e: FA3, f: FAIHSS) fractions

582

prepared from eight sub-horizon samples from a buried humic horizon occurred

583

between 147 and 187 cm depth of an Andosol near Towada volcano. Error bars

584

indicate the uncertainty (2σ) of the corresponding 14C age determination. The 14C age

585

of FA2 from the 2nd and 4th sub-horizons (152 - 157 cm and 162 - 167 cm depths)

586

and FAIHSS from the 6th sub-horizon (172 - 177 cm depth) was not detected due to

587

low yield.

25

(a)

(b)

Depth (cm)

To-a

AD 915*

To-b

2.2**

100

To-Cu

5.39 kyr BP***

Depth (cm) Sample code

-147

-152

8-1

-157

-162

-167

-172

200

8-2

8-3

8-4

8-5

To-Nb

8.37 kyr BP***

-177

8-6

-182

8-7

-187

8-8

300

humic horizon

Fig.1. Wijesinghe et al., 2019

tephras (pumice)

14

Humin

Humin

12

HA

HA

FA1

FA1

δ15N (‰)

10

FA2

FA2

FA3

FA3

FAIHSS

FAIHSS

y = 1.6038x+35.412

R = 0.5053

-25

-24

-23

-22

δ13C (‰)

Fig. 2. Wijesinghe et al., 2019

-21

-20

FA1

FA2

FA3

FAIHSS

HA

250

200

150

100

Chemical shift (ppm)

Fig. 3. Wijesinghe et al., 2019

50

50

142

147

152

157

162

167

172

177

182

(a) humin

(b) HA

y = 0.0313x - 26.678

R² = 0.9635

y = 0.0302x - 15.221

R² = 0.8359

187

142

147

Depth of soil profile (cm)

152

157

162

167

172

177

182

(c) FA1

(d) FA2

y = 0.0369x - 41.986

R² = 0.6596

y = 0.0287x + 13.243

R² = 0.9444

187

142

147

152

157

162

167

172

177

182

(e) FA3

y = 0.039x - 46.814

R² = 0.9182

187

4000

5000

(f) FAIHSS

y = 0.0333x - 28.873

R² = 0.7266

7000 4000

6000

14

Fig. 4. Wijesinghe et al., 2019

C age (yr BP)

5000

6000

7000

Table 1. Averaged C and N recovery of humin, humic acid (HA), hydrophilic fulvic acid (FA1

and FA2), and hydrophobic fulvic acid (FA3 and FAIHSS) fractions prepared from eight subhorizon samples from a buried humic horizon occurred between 147 and 187 cm depth of an

Andosol near Towada volcano.

SOC fraction

Humin

HA

FA1

FA2

FA3

FAIHSS

mean ± SD

C recovery (%)

85.4 ± 11.1

4.9 ± 1.2

5.7 ± 0.8

1.1 ± 1.1

1.9 ± 0.8

3.7 ± 2.0

102.7 ± 8.8

N recovery (%)

74.1 ± 7.2

3.3 ± 1.2

5.6 ± 0.9

1.3 ± 1.3

2.3 ± 1.5

2.0 ± 1.5

88.5 ± 5.9

Table 2. Averaged δ13C and δ15N values of humin, humic acid (HA), hydrophilic fulvic acid

(FA1 and FA2), and hydrophobic fulvic acid (FA3 and FAIHSS) fractions prepared from eight

sub-horizon samples* from a buried humic horizon occurred between 147 and 187 cm depth of

an Andosol near Towada volcano.

SOC fraction

δ13C‰

δ15N‰

humin

-22.1 ± 0.3

5.0 ± 0.4

HA

-23.9 ± 0.4

3.1 ± 0.5

FA1

-21.0 ± 0.5

7.7 ± 1.8

FA2

-21.3 ± 0.6

6.1 ± 1.0

FA3

-22.9 ± 0.5

5.6 ± 2.7

FAIHSS

-23.4 ± 0.4

5.2 ± 0.7

: The δ13C and δ15N values of FA2 (152 - 157 cm and 162 - 167 cm depths) and FAIHSS (172 177 cm depth) were not detected due to low yield.

Table 3. The C/N ratio of humin, humic acid (HA), hydrophilic fulvic acid (FA1 and FA2), and

hydrophobic fulvic acid (FA3 and FAIHSS) fractions prepared from eight sub-horizon samples

from a buried humic horizon occurred between 147 and 187 cm depth of an Andosol near

Towada volcano.

Sample

code

Sampling

C/N

depth

humin

HA

FA1

FA2

FA3

FAIHSS

(cm)

8-1

147-152

14.3

18.9

12.8

9.4

10.1

13.9

8-2

152-157

16.4

18.9

13.6

12.4

14.9

8-3

157-162

14.4

18.0

9.0

13.5

14.7

12.0

13.3

15.7

8-4

162-167

14.7

18.2

13.1

8-5

167-172

15.0

17.2

13.3

10.2

13.9

16.2

8-6

172-177

14.9

17.4

14.4

9.4

14.6

-*

8-7

177-182

14.5

17.5

13.7

10.0

14.4

16.7

8-8

182-187

14.7

17.7

11.7

12.6

14.4

17.4

mean ± SD

14.9 ± 0.7

18.0 ± 0.6

13.1 ± 0.9

10.1 ± 1.3

13.3 ± 1.5 15.7 ± 1.2

-*: The C/N ratio of FA2 (152 - 157 cm and 162 - 167 cm depths) and FAIHSS (172 - 177 cm

depth) was not detected due to low yield.

Table 4. Distribution of carbon species and aromaticity values of humin, humic acid (HA), hydrophilic fulvic acid (FA1 and

FA2), and hydrophobic fulvic acid (FA3 and FAIHSS) fractions prepared from four sub-horizon samples (147 - 152, 162 - 167,

172 - 177, and 182 - 187 cm depths) from a buried humic horizon occurred between 147 and 187 cm depth of an Andosol near

Towada volcano.

Fine fractionated

organic C

Aromaticitya

C species (%)

Carboxyl C

(165 - 190 ppm)

Aromatic C

(110 - 165 ppm)

O-alkyl C

(45 - 110 ppm)

humin*

9.9

19.5

20.7

HA

5.2 ± 1.0

52.2 ± 2.0

20.7 ± 1.4

7.4 ± 3.0

3.1 ± 1.0

70.0 ± 4.9

FA1

FA2

10.1 ± 1.3

4.2 ± 1.4

56.3 ± 2.1

FA3*

11.8

14.0

32.0

FAIHSS

10.2 ± 3.7

20.0 ± 3.3

25.4 ± 2.0

: aromatic C/ (aromatic C+ O-alkyl C+ alkyl C).

: The data was from one sub-horizon sample occurred between 162 and 167 cm depth.

Alkyl C

(0 - 45 ppm)

41.5

21.0 ± 1.4

18.2 ± 1.9

27.2 ± 0.8

41.6

44.0 ± 5.7

0.24

0.56 ± 0.03

0.04 ± 0.01

0.05 ± 0.02

0.16

0.23 ± 0.04

Table 5. The rate of vertical translocation of humin, humic acid (HA), hydrophilic fulvic acid (FA1 and

FA2), and hydrophobic fulvic acid (FA3 and FAIHSS) fractions prepared from eight sub-horizon samples

from a buried humic horizon occurred between 147 and 187 cm depth of an Andosol near Towada

volcano.

Sampling

depth

(cm)

147-152

152-157

157-162

162-167

167-172

172-177

177-182

182-187

average

humin

0.0

0.0

1.4

0.2

0.4

0.0

0.6

1.7

0.5

Rate of vertical translocation (mm/century)a

HA

FA1

FA2

FA3

0.0

0.0

0.0

0.0

0.0

0.2

0.1

0.5

0.1

**

**

**

0.0

**

**

**

2.4

2.7

4.0

4.0

3.6

3.3

**

2.7

1.5

2.7

2.5

4.4

2.3

**

4.5

3.9

3.6

3.8

FAIHSS

0.0

**

1.5

0.2

1.9

-*

2.5

1.6

1.3

The minimum rate of vertical translocation was assumed to be zero.

: (current depth of SOC fraction – depth of original deposition)/14C age of SOC fraction.

*: The rates of vertical translocation of FA2 (152 - 157 cm and 162 - 167 cm depths) and FAIHSS (172 177 cm depth) were not calculated due to low yield.

**: SOC fraction younger than the overlaid Towada-Chuseri pumice (5.39 ± 0.14 kyr BP) was not

considered in the calculation.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る