リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Relationship Between Permeability and Resistivity of Sheared Rock Fractures: The Role of Tortuosity and Flow Path Percolation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Relationship Between Permeability and Resistivity of Sheared Rock Fractures: The Role of Tortuosity and Flow Path Percolation

Sawayama, K. Ishibashi, T. Jiang, F. Tsuji, T. 京都大学 DOI:10.1029/2023GL104418

2023.10.28

概要

The fluid-flow properties of fractures have received increasing attention regarding the role of geofluids in the genesis of slow and fast earthquakes and recent advances in geoengineering developments. Geophysical observations are promising tools to remotely estimate crustal permeability changes; however, quantitative interpretations are limited by the rock-physical models' paucity for fractures. This study investigated changes in permeability, resistivity, and their respective relationships at elevated stress by performing numerical simulations of different fracture models with varying fracture size, roughness, and shear displacement. Numerical results and microscopic flow analysis demonstrate that permeability–resistivity relationships are controlled by percolation and are less dependent on fracture geometric characteristics. Our finding suggests that the permeability evolution of fractures can be formulated with resistivity changes independent of both fracture size and microstructure, the trends of which can be predicted using Archie's exponent. The extension to the electro-mechanical relationship further derives the potential applications of estimating stress changes.

この論文で使われている画像

参考文献

Ahrenholz, B., Tölke, J., Lehmann, P., Peters, A., Kaestner, A., Krafczyk, M., & Durner, W. (2008). Prediction of capillary hysteresis in a porous

material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore network model. Advances in Water

Resources, 31(9), 1151–1173. https://doi.org/10.1016/j.advwatres.2008.03.009

Aizawa, K., Kanda, W., Ogawa, Y., Iguchi, M., Yokoo, A., Yakiwara, H., & Sugano, T. (2011). Temporal changes in electrical resistivity at

Sakurajima volcano from continuous magnetotelluric observations. Journal of Volcanology and Geothermal Research, 199(1), 165–175.

https://doi.org/10.1016/j.jvolgeores.2010.11.003

Anderson, R. N., Zoback, M. D., Hickman, S. H., & Newmark, R. L. (1985). Permeability versus depth in the upper oceanic crust: In situ measurements in DSDP hole 504B, eastern equatorial Pacific. Journal of Geophysical Research, 90(B5), 3659–3669. https://doi.org/10.1029/

jb090ib05p03659

Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., et al. (2013). Digital rock physics benchmarks—Part II: Computing effective

properties. Computers & Geosciences, 50, 33–43. https://doi.org/10.1016/j.cageo.2012.09.008

Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(01),

54–62. https://doi.org/10.2118/942054-g

Becker, K., Von Herzen, R. P., Francis, T. J. G., Anderson, R. N., Honnorez, J., Adamson, A. C., et al. (1982). In situ electrical resistivity and bulk

porosity of the oceanic crust Costa Rica Rift. Nature, 300(5893), 594–598. https://doi.org/10.1038/300594a0

Berkowitz, B. (1995). Analysis of fracture network connectivity using percolation theory. Mathematical Geology, 27(4), 467–483. https://doi.

org/10.1007/bf02084422

Bernabé, Y., Zamora, M., Li, M., Maineult, A., & Tang, Y. B. (2011). Pore connectivity, permeability, and electrical formation factor: A new

model and comparison to experimental data. Journal of Geophysical Research, 116(B11), B11204. https://doi.org/10.1029/2011jb008543

Brown, S. R. (1989). Transport of fluid and electric current through a single fracture. Journal of Geophysical Research, 94(B7), 9429–9438.

https://doi.org/10.1029/jb094ib07p09429

Brown, S. R. (1995). Simple mathematical model of a rough fracture. Journal of Geophysical Research, 100(B4), 5941–5952. https://doi.

org/10.1029/94jb03262

Brown, S. R., & Scholz, C. H. (1985). Broad bandwidth study of the topography of natural rock surfaces. Journal of Geophysical Research,

90(B14), 12575–12582. https://doi.org/10.1029/jb090ib14p12575

Cai, J., Zhang, Z., Wei, W., Guo, D., Li, S., & Zhao, P. (2019). The critical factors for permeability-formation factor relation in reservoir rocks:

Pore-throat ratio, tortuosity and connectivity. Energy, 188, 116051. https://doi.org/10.1016/j.energy.2019.116051

Candela, T., & Brodsky, E. E. (2016). The minimum scale of grooving on faults. Geology, 44(8), 603–606. https://doi.org/10.1130/g37934.1

Candela, T., Brodsky, E. E., Marone, C., & Elsworth, D. (2014). Laboratory evidence for particle mobilization as a mechanism for permeability

enhancement via dynamic stressing. Earth and Planetary Science Letters, 392, 279–291. https://doi.org/10.1016/j.epsl.2014.02.025

Candela, T., Brodsky, E. E., Marone, C., & Elsworth, D. (2015). Flow rate dictates permeability enhancement during fluid pressure oscillations in

laboratory experiments. Journal of Geophysical Research: Solid Earth, 120(4), 2037–2055. https://doi.org/10.1002/2014jb011511

Candela, T., Renard, F., Klinger, Y., Mair, K., Schmittbuhl, J., & Brodsky, E. E. (2012). Roughness of fault surfaces over nine decades of length

scales. Journal of Geophysical Research, 117(B8), B08409. https://doi.org/10.1029/2011jb009041

Chen, Y., Liang, W., Lian, H., Yang, J., & Nguyen, V. P. (2017). Experimental study on the effect of fracture geometric characteristics on the

permeability in deformable rough-walled fractures. International Journal of Rock Mechanics and Mining Sciences, 98, 121–140. https://doi.

org/10.1016/j.ijrmms.2017.07.003

Chesley, C., Naif, S., Key, K., & Bassett, D. (2021). Fluid-rich subducting topography generates anomalous forearc porosity. Nature, 595(7866),

255–260. https://doi.org/10.1038/s41586-021-03619-8

Colombier, M., Wadsworth, F. B., Gurioli, L., Scheu, B., Kueppers, U., Di Muro, A., & Dingwell, D. B. (2017). The evolution of pore connectivity in volcanic rocks. Earth and Planetary Science Letters, 462, 99–109. https://doi.org/10.1016/j.epsl.2017.01.011

Didana, Y. L., Heinson, G., Thiel, S., & Krieger, L. (2017). Magnetotelluric monitoring of permeability enhancement at enhanced geothermal

system project. Geothermics, 66, 23–38. https://doi.org/10.1016/j.geothermics.2016.11.005

Durham, W. B., & Bonner, B. P. (1994). Self-propping and fluid flow in slightly offset joints at high effective pressures. Journal of Geophysical

Research, 99(B5), 9391–9399. https://doi.org/10.1029/94jb00242

Elkhoury, J. E., Brodsky, E. E., & Agnew, D. C. (2006). Seismic waves increase permeability. Nature, 441(7097), 1135–1138. https://doi.

org/10.1038/nature04798

Elkhoury, J. E., Niemeijer, A., Brodsky, E. E., & Marone, C. (2011). Laboratory observations of permeability enhancement by fluid pressure

oscillation of in situ fractured rock. Journal of Geophysical Research, 116(B2), 1–15. https://doi.org/10.1029/2010jb007759

Elsworth, D., Ishibashi, T., & Zhang, F. (2018). Permeability evolution and frictional stability of fabricated fractures with specified roughness.

Journal of Geophysical Research, 123(11), 9355–9375. https://doi.org/10.1029/2018JB016215

Garboczi, E. J. (1998). Finite element and finite difference programs for computing the linear electric and elastic properties of digital image of

random materials. Natl. Inst. Stand. Technol. Interag. Rep. (p. 6269).

Ghanbarian, B., Hunt, A. G., Ewing, R. P., & Skinner, T. E. (2014). Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories. Geophysical Research Letters, 41(11), 3884–3890. https://doi.org/10.1002/2014gl060180

Ghanbarian, B., & Male, F. (2021). Theoretical power-law relationship between permeability and formation factor. Journal of Petroleum Science

& Engineering, 198, 108249. https://doi.org/10.1016/j.petrol.2020.108249

Glover, P. W. (2009). What is the cementation exponent? A new interpretation. The Leading Edge, 28(1), 82–85. https://doi.org/10.1190/1.3064150

Glover, P. W., Zadjali, I. I., & Frew, K. A. (2006). Permeability prediction from MICP and NMR data using an electrokinetic approach. Geophysics, 71(4), F49–F60. https://doi.org/10.1190/1.2216930

Guéguen, Y., Chelidze, T., & Le Ravalec, M. (1997). Microstructures, percolation thresholds, and rock physical properties. Tectonophysics,

279(1), 23–35. https://doi.org/10.1016/s0040-1951(97)00132-7

Gueguen, Y., & Dienes, J. (1989). Transport properties of rocks from statistics and percolation. Mathematical Geology, 21(1), 1–13.

https://doi.org/10.1007/bf00897237

Guéguen, Y., & Palciauskas, V. (1994). Introduction to the physics of rocks. Princeton University Press.

Hawkins, A. J., Becker, M. W., & Tester, J. W. (2018). Inert and adsorptive tracer tests for field measurement of flow-wetted surface area. Water

Resources Research, 54(8), 5341–5358. https://doi.org/10.1029/2017wr021910

Heuler, V. B., Inagaki, F., Morono, Y., Kubo, Y., & Maeda, L. (2017). Temperature limit of the deep bio-sphere off Muroto. In Proceedings of the

international ocean discovery program (Vol. 370). International Ocean Discovery Program. https://doi.org/10.14379/iodp.proc.370.103.2017

9 of 12

19448007, 2023, 20, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023GL104418 by Cochrane Japan, Wiley Online Library on [27/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Geophysical Research Letters

10.1029/2023GL104418

Hilfer, R. (1992). Local-porosity theory for flow in porous media. Physical Review B: Condensed Matter, 45(13), 7115–7121. https://doi.

org/10.1103/physrevb.45.7115

Hirose, T., Hamada, Y., Tanikawa, W., Kamiya, N., Yamamoto, Y., Tsuji, T., et al. (2021). High fluid-pressure patches beneath the décollement: A potential source of slow earthquakes in the Nankai trough off cape Muroto. Journal of Geophysical Research: Solid Earth, 126(6),

e2021JB021831. https://doi.org/10.1029/2021jb021831

Hunt, A. G., & Sahimi, M. (2017). Flow, transport, and reaction in porous media: Percolation scaling, critical-path analysis, and effective medium

approximation. Reviews of Geophysics, 55(4), 993–1078. https://doi.org/10.1002/2017rg000558

Hunziker, J., Greenwood, A., Minato, S., Barbosa, N. D., Caspari, E., & Holliger, K. (2020). Bayesian full-waveform inversion of tube waves to

estimate fracture aperture and compliance. Solid Earth, 11(2), 657–668. https://doi.org/10.5194/se-11-657-2020

Ishibashi, T., Watanabe, N., Hirano, N., Okamoto, A., & Tsuchiya, N. (2015). Beyond-laboratory-scale prediction for channeling flows through

subsurface rock fractures with heterogeneous aperture distributions revealed by laboratory evaluation. Journal of Geophysical Research: Solid

Earth, 120(1), 106–124. https://doi.org/10.1002/2014jb011555

Jiang, F., Tsuji, T., & Hu, C. (2014). Elucidating the role of interfacial tension for hydrological properties of two-phase flow in natural sandstone

by an improved lattice Boltzmann method. Transport in Porous Media, 104(1), 205–229. https://doi.org/10.1007/s11242-014-0329-0

Johnson, T. C., Burghardt, J., Strickland, C., Knox, H., Vermeul, V., White, M., et al. (2021). 4D proxy imaging of fracture dilation and stress

shadowing using electrical resistivity tomography during high pressure injections into a dense rock formation. Journal of Geophysical

Research: Solid Earth, 126(11), e2021JB022298. https://doi.org/10.1029/2021jb022298

Katayama, I., Abe, N., Hatakeyama, K., Akamatsu, Y., Okazaki, K., Ulven, O. I., et al. (2020). Permeability profiles across the crust-mantle

sections in the Oman drilling project inferred from dry and wet resistivity data. Journal of Geophysical Research: Solid Earth, 125(8),

e2019JB018698. https://doi.org/10.1029/2019jb018698

Katz, A. J., & Thompson, A. H. (1986). Quantitative prediction of permeability in porous rock. Physical Review B: Condensed Matter, 34(11),

8179–8181. https://doi.org/10.1103/physrevb.34.8179

Kim, Y.-S., & Sanderson, D. J. (2005). The relationship between displacement and length of faults: A review. Earth-Science Reviews, 68(3),

317–334. https://doi.org/10.1016/j.earscirev.2004.06.003

Kirkby, A., & Heinson, G. (2017). Three-dimensional resistor network modeling of the resistivity and permeability of fractured rocks. Journal of

Geophysical Research: Solid Earth, 122(4), 2653–2669. https://doi.org/10.1002/2016jb013854

Kirkby, A., Heinson, G., & Krieger, L. (2016). Relating permeability and electrical resistivity in fractures using random resistor network models.

Journal of Geophysical Research: Solid Earth, 121(3), 1546–1564. https://doi.org/10.1002/2015jb012541

Kitajima, H., & Saffer, D. M. (2012). Elevated pore pressure and anomalously low stress in regions of low frequency earthquakes along the

Nankai Trough subduction megathrust. Geophysical Research Letters, 39(23), L23301. https://doi.org/10.1029/2:012gl053793

Matsuki, K., Chida, Y., Sakaguchi, K., & Glover, P. W. J. (2006). Size effect on aperture and permeability of a fracture as estimated in large synthetic

fractures. International Journal of Rock Mechanics and Mining Sciences, 43(5), 726–755. https://doi.org/10.1016/j.ijrmms.2005.12.001

Mazzella, A., & Morrison, H. F. (1974). Electrical resistivity variations associated with earthquakes on the San Andreas fault. Science, 185(4154),

855–857. https://doi.org/10.1126/science.185.4154.855

Minato, S., & Ghose, R. (2016). AVO inversion for a non-welded interface: Estimating compliances of a fluid-filled fracture. Geophysical Journal

International, 206(1), 56–62. https://doi.org/10.1093/gji/ggw138

Naif, S., Key, K., Constable, S., & Evans, R. L. (2016). Porosity and fluid budget of a water-rich megathrust revealed with electromagnetic data at

the Middle America Trench. Geochemistry, Geophysics, Geosystems, 17(11), 4495–4516. https://doi.org/10.1002/2016gc006556

Okoroafor, E. R., Co, C., & Horne, R. N. (2022). Numerical investigation of the impact of fracture aperture anisotropy on EGS thermal performance. Geothermics, 100, 102354. https://doi.org/10.1016/j.geothermics.2022.102354

Park, S. K. (1991). Monitoring resistivity changes prior to earthquakes in Parkfield, California, with telluric arrays. Journal of Geophysical

Research: Solid Earth, 96(B9), 14211–14237. https://doi.org/10.1029/91jb01228

Paterson, M. S. (1983). The equivalent channel model for permeability and resistivity in fluid-saturated rock—A re-appraisal. Mechanics of

Materials, 2(4), 345–352. https://doi.org/10.1016/0167-6636(83)90025-x

Peacock, J. R., Thiel, S., Heinson, G. S., & Reid, P. (2013). Time-lapse magnetotelluric monitoring of an enhanced geothermal system. Geophysics, 78(3), B121–B130. https://doi.org/10.1190/geo2012-0275.1

Peacock, J. R., Thiel, S., Reid, P., & Heinson, G. (2012). Magnetotelluric monitoring of a fluid injection: Example from an enhanced geothermal

system. Geophysical Research Letters, 39(18), 3–7. https://doi.org/10.1029/2012gl053080

Petrovitch, C. L., Pyrak-Nolte, L. J., & Nolte, D. D. (2014). Combined scaling of fluid flow and seismic stiffness in single fractures. Rock Mechanics and Rock Engineering, 47(5), 1613–1623. https://doi.org/10.1007/s00603-014-0591-z

Polonsky, I. A., & Keer, L. M. (1999). A numerical method for solving rough contact problems based on the multi-level multi-summation and

conjugate gradient techniques. Wear: An International Journal on the Science and Technology of Friction Lubrication and Wear, 231(2),

206–219. https://doi.org/10.1016/s0043-1648(99)00113-1

Power, W. L., & Durham, W. B. (1997). Topography of natural and artificial fractures in granitic rocks: Implications for studies of rock

friction and fluid migration. International Journal of Rock Mechanics and Mining Sciences, 34(6), 979–989. https://doi.org/10.1016/

s1365-1609(97)80007-x

Power, W. L., Tullis, T. E., Brown, S. R., Boitnott, G. N., & Scholz, C. H. (1987). Roughness of natural fault surfaces. Geophysical Research

Letters, 14(1), 29–32. https://doi.org/10.1029/gl014i001p00029

Pyrak-Nolte, L. J., Cook, N. G. W., & Nolte, D. D. (1988). Fluid percolation through single fractures. Geophysical Research Letters, 15(11),

1247–1250. https://doi.org/10.1029/gl015i011p01247

Pyrak-Nolte, L. J., & Morris, J. P. (2000). Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow.

International Journal of Rock Mechanics and Mining Sciences, 37(1), 245–262. https://doi.org/10.1016/s1365-1609(99)00104-5

Pyrak-Nolte, L. J., & Nolte, D. D. (2016). Approaching a universal scaling relationship between fracture stiffness and fluid flow. Nature Communications, 7(1), 10663. https://doi.org/10.1038/ncomms10663

Renard, F., Candela, T., & Bouchaud, E. (2013). Constant dimensionality of fault roughness from the scale of micro-fractures to the scale of

continents. Geophysical Research Letters, 40(1), 83–87. https://doi.org/10.1029/2012GL054143

Revil, A., & Cathles, L. M., III. (1999). Permeability of shaly sands. Water Resources Research, 35(3), 651–662. https://doi.org/10.1029/98wr02700

Revil, A., Kessouri, P., & Torres-Verdín, C. (2014). Electrical conductivity, induced polarization, and permeability of the Fontainebleau sandstone. Geophysics, 79(5), D301–D318. https://doi.org/10.1190/geo2014-0036.1

Sawayama, K. (2023). 15 fractures of granite [Dataset]. Digital Rocks Portal. https://doi.org/10.17612/7ffv-c780

SAWAYAMA ET AL.

10 of 12

19448007, 2023, 20, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023GL104418 by Cochrane Japan, Wiley Online Library on [27/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Geophysical Research Letters

10.1029/2023GL104418

Sawayama, K., Ikeda, T., Tsuji, T., Jiang, F., Nishizawa, O., & Fujimitsu, Y. (2022). Elastic wave velocity changes due to the fracture aperture

and density, and direct correlation with permeability: An energetic approach to mated rock fractures. Journal of Geophysical Research: Solid

Earth, 127(2), e2021JB022639. https://doi.org/10.1029/2021jb022639

Sawayama, K., Ishibashi, T., Jiang, F., Tsuji, T., & Fujimitsu, Y. (2021a). Relating hydraulic–electrical–elastic properties of natural rock fractures

at elevated stress and associated transient changes of fracture flow. Rock Mechanics and Rock Engineering, 54(5), 2145–2164. https://doi.

org/10.1007/s00603-021-02391-5

Sawayama, K., Ishibashi, T., Jiang, F., Tsuji, T., Nishizawa, O., & Fujimitsu, Y. (2021b). Scale-independent relationship between permeability

and resistivity in mated fractures with natural rough surfaces. Geothermics, 94, 102065. https://doi.org/10.1016/j.geothermics.2021.102065

Sawayama, K., Kitamura, K., & Fujimitsu, Y. (2018). Laboratory measurements on electric and elastic properties of fractured geothermal reservoir rocks under simulated EGS conditions. GRC Transactions, 42, 2459–2475.

Schlische, R. W., Young, S. S., Ackermann, R. V., & Gupta, A. (1996). Geometry and scaling relations of a population of very small rift-related

normal faults. Geology, 24(8), 683–686. https://doi.org/10.1130/0091-7613(1996)024<0683:gasroa>2.3.co;2

Schultz, R. A., Soliva, R., Fossen, H., Okubo, C. H., & Reeves, D. M. (2008). Dependence of displacement–length scaling relations for fractures

and deformation bands on the volumetric changes across them. Journal of Structural Geology, 30(11), 1405–1411. https://doi.org/10.1016/j.

jsg.2008.08.001

Shi, Y., Liao, X., Zhang, D., & Liu, C.-P. (2019). Seismic waves could decrease the permeability of the shallow crust. Geophysical Research

Letters, 46(12), 6371–6377. https://doi.org/10.1029/2019gl081974

Shi, Z., Zhang, S., Yan, R., & Wang, G. (2018). Fault zone permeability decrease following large earthquakes in a hydrothermal system. Geophysical Research Letters, 45(3), 1387–1394. https://doi.org/10.1002/2017gl075821

Shokouhi, P., Jin, J., Wood, C., Rivière, J., Madara, B., Elsworth, D., & Marone, C. (2020). Dynamic stressing of naturally fractured rocks:

On the relation between transient changes in permeability and elastic wave velocity. Geophysical Research Letters, 47(1), 1–10. https://doi.

org/10.1029/2019gl083557

Sibson, R. H. (1987). Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology, 15(8), 701–704. https://doi.org/10.1130/

0091-7613(1987)15<701:eraama>2.0.co;2

Slagle, A. L., & Goldberg, D. S. (2011). Evaluation of ocean crustal Sites 1256 and 504 for long-term CO2 sequestration. Geophysical Research

Letters, 38(16), L16307. https://doi.org/10.1029/2011gl048613

Stesky, R. M. (1986). Electrical conductivity of brine-saturated fractured rock. Geophysics, 51(8), 1585–1593. https://doi.org/10.1190/1.1442209

Sun, X., Xiang, Y., & Shi, Z. (2019). Changes in permeability caused by two consecutive earthquakes—Insights from the responses of a

well-aquifer system to seismic waves. Geophysical Research Letters, 46(17–18), 10367–10374. https://doi.org/10.1029/2019gl084704

Tonegawa, T., Araki, E., Kimura, T., Nakamura, T., Nakano, M., & Suzuki, K. (2017). Sporadic low-velocity volumes spatially correlate with

shallow very low frequency earthquake clusters. Nature Communications, 8(1), 2048. https://doi.org/10.1038/s41467-017-02276-8

Tsang, Y. W., & Witherspoon, P. A. (1981). Hydromechanical behavior of a deformable rock fracture subject to normal stress. Journal of

Geophysical Research, 86(B10), 9287–9298. https://doi.org/10.1029/jb086ib10p09287

Tsuji, T., Kamei, R., & Pratt, R. G. (2014). Pore pressure distribution of a mega-splay fault system in the Nankai Trough subduction zone: Insight

into up-dip extent of the seismogenic zone. Earth and Planetary Science Letters, 396, 165–178. https://doi.org/10.1016/j.epsl.2014.04.011

Tsuji, T., Tokuyama, H., Costa Pisani, P., & Moore, G. (2008). Effective stress and pore pressure in the Nankai accretionary prism off the Muroto

Peninsula, southwestern Japan. Journal of Geophysical Research, 113(B11), B11401. https://doi.org/10.1029/2007jb005002

Vogler, D., Settgast, R. R., Annavarapu, C., Madonna, C., Bayer, P., & Amann, F. (2018). Experiments and simulations of fully hydro-mechanically

coupled response of rough fractures exposed to high-pressure fluid injection. Journal of Geophysical Research: Solid Earth, 123(2), 1186–

1200. https://doi.org/10.1002/2017jb015057

Walsh, J. B., & Brace, W. F. (1984). The effect of pressure on porosity and the transport properties of rock. Journal of Geophysical Research,

89(B11), 9425–9431. https://doi.org/10.1029/jb089ib11p09425

Walsh, R., McDermott, C., & Kolditz, O. (2008). Numerical modeling of stress-permeability coupling in rough fractures. Hydrogeology Journal,

16(4), 613–627. https://doi.org/10.1007/s10040-007-0254-1

Wang, L., & Cardenas, M. B. (2016). Development of an empirical model relating permeability and specific stiffness for rough fractures from

numerical deformation experiments. Journal of Geophysical Research: Solid Earth, 121(7), 4977–4989. https://doi.org/10.1002/2016jb013004

Watanabe, N., Hirano, N., & Tsuchiya, N. (2008). Determination of aperture structure and fluid flow in a rock fracture by high-resolution

numerical modeling on the basis of a flow-through experiment under confining pressure. Water Resources Research, 44(6), 1–11. https://doi.

org/10.1029/2006wr005411

Witherspoon, P. A., Wang, J. S. Y., Iwai, K., & Gale, J. E. (1980). Validity of cubic law for fluid flow in a deformable rock fracture. Water

Resources Research, 16(6), 1016–1024. https://doi.org/10.1029/wr016i006p01016

Wood, C. E., Shokouhi, P., Manogharan, P., Rivère, J., Elsworth, D., & Marone, C. (2021). Imaging elastodynamic and hydraulic properties of in

situ fractured rock: An experimental investigation exploring effects of dynamic stressing and shearing. Journal of Geophysical Research: Solid

Earth, 126(11), e2020JB021521. https://doi.org/10.1029/2020jb021521

Worthington, M. (2007). The compliance of macrofractures. The Leading Edge, 26(9), 1118–1122. https://doi.org/10.1190/1.2780780

Wu, J., Goto, T.-N., & Koike, K. (2021). Estimating fractured rock effective permeability using discrete fracture networks constrained by electrical resistivity data. Engineering Geology, 289, 106178. https://doi.org/10.1016/j.enggeo.2021.106178

Xue, L., Li, H.-B., Brodsky, E. E., Xu, Z.-Q., Kano, Y., Wang, H., et al. (2013). Continuous permeability measurements record healing inside the

Wenchuan earthquake fault zone. Science, 340(6140), 1555–1559. https://doi.org/10.1126/science.1237237

Yamaya, Y., Suzuki, Y., Murata, Y., Okamoto, K., Watanabe, N., Asanuma, H., et al. (2022). 3-D resistivity imaging of the supercritical geothermal system in the Sengan geothermal region, NE Japan. Geothermics, 103, 102412. https://doi.org/10.1016/j.geothermics.2022.102412

Zimmerman, R. W., Chen, D.-W., & Cook, N. G. W. (1992). The effect of contact area on the permeability of fractures. Journal of Hydrology,

139(1), 79–96. https://doi.org/10.1016/0022-1694(92)90196-3

References From the Supporting Information

Chen, Z., Narayan, S. P., Yang, Z., & Rahman, S. S. (2000). An experimental investigation of hydraulic behavior of fractures and joints in granitic

rock. International Journal of Rock Mechanics and Mining Sciences, 37(7), 1061–1071. https://doi.org/10.1016/s1365-1609(00)00039-3

Ishibashi, T., Watanabe, N., Asanuma, H., & Tsuchiya, N. (2016). Linking microearthquakes to fracture permeability change: The role of surface

roughness. Geophysical Research Letters, 43(14), 7486–7493. https://doi.org/10.1002/2016gl069478

SAWAYAMA ET AL.

11 of 12

19448007, 2023, 20, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023GL104418 by Cochrane Japan, Wiley Online Library on [27/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Geophysical Research Letters

10.1029/2023GL104418

Johnson, K. L., Greenwood, J. A., & Higginson, J. G. (1985). The contact of elastic regular wavy surfaces. International Journal of Mechanical

Sciences, 27(6), 383–396. https://doi.org/10.1016/0020-7403(85)90029-3

Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of

America, 65, 1073–1095.

Mallikamas, W., & Rajaram, H. (2005). On the anisotropy of the aperture correlation and effective transmissivity in fractures generated by sliding

between identical self-affine surfaces. Geophysical Research Letters, 32(11), L11401. https://doi.org/10.1029/2005gl022859

SAWAYAMA ET AL.

12 of 12

19448007, 2023, 20, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023GL104418 by Cochrane Japan, Wiley Online Library on [27/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Geophysical Research Letters

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る