リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「固体からの高次高調波発生と非線形電流ダイナミクスの研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

固体からの高次高調波発生と非線形電流ダイナミクスの研究

佐成, 晏之 京都大学 DOI:10.14989/doctor.k22987

2021.03.23

概要

高強度なレーザーパルスを物質に照射して生じる高次高調波発生は、可視光から軟X線領域に至る広帯域のコヒーレント光源やアト秒パルス発生という応用の観点から精力的に研究が行われている。最近では固体試料からの高次高調波発生が観測され、固体とレーザー光強電場との極端な非線形光学応答についての新たな学問領域が形成されつつある。固体における高次高調波発生は、レーザー電場による電子のバンド構造内の駆動がもたらす非線形電流が起源であり、固体の電子状態の情報を与える新たな分光手法としても期待される。この非線形なバンド内電流は、キャリア(電子、正孔)の励起数と波数空間上のバンド曲率で決まる群速度の積として理論的に与えられるが、これらの物理量がどのように高次高調波に影響するのかは未解明であった。本論文では、特色ある2種類の半導体試料からの高次高調波の観測を行い、励起光の偏光に対する結晶の角度依存性、励起光強度依存性、発生した高調波の偏光状態を調べることにより非線形電流の起源の解明を試みている。

第1章では高次高調波発生の研究背景を述べ、その理論的な枠組みとして広く使われている半導体ブロッホ方程式および密度行列を用いた第一原理による計算手法を説明し、従来の高次高調波発生の一般的な理解を説明している。特にバンド内非線形電流とその構成要素であるキャリア数と群速度のダイナミクスの高次高調波発生との関係を述べている。第2章では、実験で用いた試料であるハライドペロブスカイト半導体CH3NH3PbCl3(MAPbCl3)と層状半導体GaSeについて説明し、バンド内電流を構成するキャリア数と群速度の役割を分離して理解する試料としての意義を述べている。

第3章では、MAPbCl3結晶における励起レーザーの偏光に対する高次高調波発生の発生効率の結晶角度依存性の測定結果を説明している。MAPbCl3結晶におけるPb-Cl原子間の指向的な結合を反映し、4回回転対称を示す異方的な発生効率が観測されている。また、励起光強度を増加させると、結晶角度依存性の異方性が弱まる現象を観測し、密度行列法による第一原理計算の結果と比較している。今回の極めて非共鳴な励起条件におけるキャリア励起過程について、価電子帯と伝導帯を二準位とするモデルで考察を行い、高次高調波発生における仮想励起の重要性を明らかにした。

第4章では、GaSe試料に対して、直交偏光した2色のレーザーの同時励起による高次高調波の測定を行い、波数空間上におけるキャリアの二次元の運動が発生効率の結晶角度依存性、および高調波の偏光状態に与える影響を実験的に調べている。特に、励起強度の増加とともに高次高調波の発生効率の結晶角度依存性の異方性が徐々に顕著になる実験結果が得られた。この実験結果は、バンド構造を三角関数で近似したモデルで再現し、光電場の強度が増加するにつれて、バンド構造の異方性の強い高いエネルギー状態まで駆動されていることを示した。

第5章では、本論文で明らかにした知見をまとめ結論を述べている。バンド端の線形吸収係数が極めて大きいMAPbCl3では、非線形な励起過程が高次高調波の重要な起源となり、これより2桁小さな値を示すGaSeではバンド構造の非調和性が非線形電流の発生により重要である。これらの結晶は異なる結晶対称性を持ち、高次高調波効率の結晶の角度依存性、励起強度依存性などを多角的に測定し、理論的な解析を行うことにより、固体における高次高調波発生で重要な非線形電流の起源について新たな知見が得られたと結論付けている。

この論文で使われている画像

参考文献

[1] T. H. Maiman, ”Stimulated optical radiation in ruby,” Nature 187, 493 (1960).

[2] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, ”Generation of optical harmonics,” Phys. Rev. Lett. 7,118 (1961).

[3] P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman,”Free-free transitions following six-photon ionization of Xenon atoms,” Phys. Rev. Lett. 42,1127 (1979).

[4] A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes, ”Studies of multiphoton production of vacuumultraviolet radiation in the rare gases,” J. Opt. Soc. Am. B 4, 595 (1987).

[5] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus,”Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, 31 (1988).

[6] L. V. Keldysh,”Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307 (1965).

[7] P. B. Corkum, ”Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994 (1993).

[8] M. C. Kohler, T. Pfeifer, K. Z. Hatsagortsyan, and C. H. Keitel, ”Frontiers of atomic high-harmonic generation,” Advances In Atomic, Molecular, and Optical Physics 61, 159 (2012).

[9] T. Ditmire, T. Donnelly, R. W. Falcone, and M. D. Perry, ”Strong X-Ray emission from high-temperature plasmas produced by intense irradiation of clusters,” Phys. Rev. Lett. 75, 3122 (1995).

[10] M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, ”X-ray pulses approaching the attosecond frontier,” Science 291, 1923 (2001).

[11] C. Winterfeldt, C. Spielmann, and G. Gerber, ”Optimal control of highharmonic generation,” Rev. Mod. Phys. 80, 117 (2008).

[12] K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, and Z. Chang, ”Tailoring a 67 attosecond pulse through advantageous phase-mismatch,” Opt. Lett. 37, 3891 (2012).

[13] J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, ”Tomographic imaging of molecular orbitals,” Nature 432, 867 (2004).

[14] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum, and M. Guhr, ”High harmonic generation from multiple orbitals in N2,” Science 322, 1232 (2008).

[15] O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, and M. Y. Ivanov, ”High harmonic interferometry of multi-electron dynamics in molecules,” Nature 460, 972 (2009).

[16] E. Goulielmakis, Z. H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, ”Real-time observation of valence electron motion,” Nature 466, 739 (2010).

[17] P. B. Corkum and F. Krausz, ”Attosecond science,” Nat. Phys. 3, 381 (2007).

[18] F.Krausz and M. Ivanov, ”Attosecond physics,” Rev. Mod. Phys. 81, 163 (2009).

[19] K. Midorikawa, ”Ultrafast dynamic imaging,” Nat. Photon. 5, 640 (2011).

[20] F. H. M. Faisal, and J. Z. Kaminski, ”Floquet-Bloch theory of high-harmonic generation in periodic structures,” Phys. Rev. A 56, 748 (1997).

[21] A. K. Gupta, O. E. Alon, and N. Moiseyev, ”Attosecond laser pulse synthesis using bichromatic high-order harmonic generation,” Phys. Rev. B 68, 205101 (2003).

[22] D. Golde, T. Meier, and S. W. Koch, ”High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter-and intraband excitations,” Phys. Rev. B 77, 075330 (2008).

[23] W. Kuehn, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, and R. Hey, ”Coherent ballistic motion of electrons in a periodic potential,” Phys. Rev. Lett. 104, 146602 (2010).

[24] S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, ”Observation of high-order harmonic generation in a bulk crystal,” Nat, Phys. 7, 138 (2011).

[25] G. Ndabashimiye, S. Ghimire, M. Wu, D. A. Browne, K. J. Schafer, M. B. Gaarde, and D. A. Reis, ”Solid-state harmonics beyond the atomic limit,” Nature 534, 520(2016).

[26] Y. S. You, D. A. Reis, and S. Ghimire, ”Anisotropic high-harmonic generation in bulk crystals,” Nat. Phys. 13, 345(2017).

[27] O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, ”Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photon. 8, 119 (2014).

[28] M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, ”Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523, 572 (2015).

[29] G. Vampa, T. J. Hammond, N. Thire, B. E. Schmidt, F. Legare, C. R. McDonald, T. Brabec, and P. B. Corkum, ”Linking high harmonics from gases and solids,” Nature 522, 462 (2015).

[30] T. T. Luu, M. Garg, S. Yu. Kruchinin, A. Moulet, M. Th. Hassan, and E. Goulielmakis, ”Extreme ultraviolet high-harmonic spectroscopy of solids,” Nature 521, 498 (2015).

[31] M. Garg, M. Zhan, T. T. Luu, H. Lakhotia, T. Klostermann, A. Guggenmos, and E. Goulielmakis, ”Multi-petahertz electronic metrology,” Nature 538, 359 (2016).

[32] F. Langer, M. Hohenleutner, U. Huttner, S. W. Koch, M. Kira, and R. Huber, ”Symmetry-controlled temporal structure of high-harmonic carrier fields from a bulk crystal,” Nat. Photon. 11, 227 (2017).

[33] H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis, ”Highharmonic generation from an atomically thin semiconductor,” Nat. Phys. 13, 262 (2017).

[34] N. Yoshikawa, T. Tamaya, and K. Tanaka, ”High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356, 736 (2017).

[35] G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug, P. B. Corkum, and T. Brabec, ”Theoretical analysis of high-harmonic generation in solids,” Phys. Rev. Lett. 113, 073901 (2014).

[36] G. Vampa, T. J. Hammond, N. Thire, B. E. Schmidt, F. Legare, C. R. McDonald, T. Brabec, D. D. Klug, and P. B. Corkum, ”All-optical reconstruction of crystal band structure,” Phys. Rev. Lett. 115, 193603 (2015).

[37] L. Allen and J. H. Eberly, Optical resonance and two-level atoms (Wiley, New York, 1975).

[38] M. Fox, Quantum Optics (Oxford University Press, New York, 2006).

[39] I. I. Rabi, ”Space quantization in a magnetic gyrating field,” Phys. Rev. 51, 652 (1937).

[40] H. Haug and S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1994).

[41] C. Klingshirn, Semiconductor Optics (Springer, Berlin, 2007).

[42] T. Meier, G. von Plessen, P. Thomas, and S. W. Koch, ”Coherent electric-field effects in semiconductors,” Phys. Rev. Lett. 73, 902 (1994).

[43] T. Meier, F. Rossi, P. Thomas, and S. W. Koch, ”Dynamic localization in anisotropic Coulomb systems: Field induced crossover of the exciton dimension,” Phys. Rev. Lett. 75, 2558 (1995).

[44] T. Meier, P. Thomas, and S. W. Koch, Coherent Semiconductor Optics: From Basic Concepts to Nanostructure Applications (Springer, Berlin, 2007).

[45] P. Hohenberg and W. Kohn, ”Inhomogeneous electron gas,” Phys. Rev. 136, B864, (1964).

[46] W. Kohn and L. J. Sham, ”Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, 1133 (1965).

[47] M. Lindberg and S. Koch, ”Effective Bloch equations for semiconductors,” Phys. Rev. B 38, 3342 (1988).

[48] K. Kaneshima, Y. Shinohara, K. Takeuchi, N. Ishii, K. Imasaka, T. Kaji, S. Ashihara, K. L. Ishikawa, and J. Itatani, ”Polarization-resolved study of high harmonics from bulk semiconductors,” Phys. Rev. Lett. 120, 243903 (2018).

[49] E. Runge and E. U. K. Gross, ”Density-functional theory for time-dependent systems,” Phys. Rev. Lett. 52, 997 (1984).

[50] R. Bauernschmitt and R. Ahlrichs, ”Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory,” Chem. Phys. Lett. 256, 454 (1996).

[51] J. P. Perdew and Y. Wang, ”Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B 45, 13244 (1992).

[52] I. Floss, C. Lemell, G. Wachter, V. Smejkal, S. A. Sato, X. M. Tong, K. Yabana, and J. Burgdorfer, ”Ab initio multiscale simulation of high-order harmonic generation in solids,” Phys. Rev. A 97, 011401 (2018).

[53] S. A. Sato, J. W. McIver, M. Nuske, P. Tang, G. Jotzu, B. Schulte, H. Hubener, U. De Giovannini, L. Mathey, M. A. Sentef, A. Cavalleri, and A. Rubio, ”Microscopic theory for the light-induced anomalous Hall effect in graphene,” Phys. Rev. B 99, 214302 (2019).

[54] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, ”Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341 (2013).

[55] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, ”Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344 (2013).

[56] Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, ”Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications,” J. Am. Chem. Soc. 136, 11610 (2014).

[57] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, ”High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584 (2014).

[58] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, ”Electron-hole diffusion lengths 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347, 967 (2015).

[59] H. Hirori, P. Xia, Y. Shinohara, T. Otobe, Y. Sanari, H. Tahara, N. Ishii, J. Itatani, K. L. Ishikawa, T. Aharen, M. Ozaki, A. Wakamiya, and Y. Kanemitsu , ”High-order harmonic generation from hybrid organic-inorganic perovskite thin films,” APL Mater. 7, 041107 (2019).

[60] J. Even, L. Pedesseau, J. M. Jancu, and C. Katan, ”Importance of spin orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications,” J. Phys. Chem. Lett. 4, 2999 (2013).

[61] P. Umari, E. Mosconi, and F. De Angelis, ”Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting,” Sci. Rep. 4, 4467 (2014).

[62] C. Motta, F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi, and S. Sanvito, ”Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3,” Nat. Commmun. 6, 7026 (2015).

[63] M. H. Du, ”Density functional calculations of native defects in CH3NH3PbI3: effects of spin-orbit coupling and self-interaction error,” J. Phys. Chem. Lett. 6, 1461 (2015).

[64] C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, ”Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films,” APL Mater. 2, 081513 (2014).

[65] M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, ”Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Applied 5, 014012 (2016).

[66] L. Kong, G. Liu, J. Gong, Q. Hu, R. D. Schaller, P. Dera, D. Zhang, Z. Liu, W. Yang, K. Zhu, Y. Tang, C. Wang, S. H. Wei, T. Xu, and H. k. Mao, ”Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites,” Proc. Natl Acad. Sci. USA 113, 8910 (2016).

[67] K. Ohara, T. Yamada, H. Tahara, T. Aharen, H. Hirori, H. Suzuura, and Y. Kanemitsu, ”Excitonic enhancement of optical nonlinearities in perovskite CH3NH3PbI3 single crystals,” Phys. Rev. Mater. 3, 111601(R) (2019).

[68] G. Murtaza and I. Ahmad, ”First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M= Cl, Br, I),” Physica B Cond. Mat. 406, 3222 (2011).

[69] S. X. Tao, I. Schmidt, G. Brocks, J. K. Jiang, I. Tranca, K. Meerholz, and S. Olthof, ”Absolute energy level positions in tin- and lead-based halide perovskites,” Nat. Commun. 10, 2560 (2019).

[70] http://elk.sourceforge.net/

[71] Chr. Kn. Moller, ”Crystal structure and photoconductivity of cesium plumbohalides,” Nature 182, 1436 (1958).

[72] T. Yamada, T. Aharen, and Y. Kanemitsu, ”Near-band-edge optical responses of CH3NH3PbCl3 single crystals: photon recycling of excitonic luminescence,” Phys. Rev. Lett. 120, 057404 (2018).

[73] Y. Kanemitsu and T. Handa, ”Photophysics of metal halide perovskites: From materials to devices,” Jpn. J. Appl. Phys. 57, 090101 (2018).

[74] T. Handa, H. Tahara, T. Aharen, and Y. Kanemitsu, ”Large negative thermo76 optic coefficients of a lead halide perovskite,” Sci. Adv. 5, eaax0786 (2019).

[75] T. Umebayashi, K. Asai, T. Kondo, and A. Nakao, ”Electronic structures of lead iodide based low-dimensional crystals,” Phys. Rev. B 67, 155405 (2003).

[76] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, ”Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050 (2009).

[77] Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, ”Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687 (2014).

[78] G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Gratzel, S. Mhaisalkar, and T. C. Sum, ”Low-temperature solution-processed wavelengthtunable perovskites for lasing,” Nat. Mater. 13, 476 (2014).

[79] M. Saliba, T. Matsui, K. Domanski, J. Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J. P. Correa Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, ”Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance,” Science 354, 206 (2016).

[80] F. P. Garcia de Arquer, A. Armin, P. Meredith, and E. H. Sargent, ”Solution-processed semiconductors for next-generation photodetectors,” Nat. Rev. Mater. 2, 16100 (2017).

[81] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, ”Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347, 519 (2015).

[82] Y. Sanari, H. Hirori, T. Aharen, H. Tahara, Y. Shinohara, K. L. Ishikawa, T. Otobe, P. Xia, N. Ishii, J. Itatani, S. A. Sato, and Y. Kanemitsu, ”Role of virtual band population for high harmonic generation in solids,” Phys. Rev. B 102, 041125(R) (2020).

[83] N. Fernelius, ”Properties of gallium selenide single crystal,” Progress in Crystal Growth and Characterization of Materials 28, 275(1994).

[84] A. Segura, J. Bouvier, M. V. Andres, F. J. Manjon, and V. Munoz, ”Strong optical nonlinearities in gallium and indium selenides related to inter-valence77 band transitions induced by light pulses,” Phys. Rev. B 56, 4075 (1997).

[85] M. Schluter, J. Camassel, S. Kohn, J. P. Voitchovsky, Y. R. Shen, and M. L. Cohen, ”Optical properties of GaSe and GaSxSe1−x mixed crystals,” Phys. Rev. B 13, 3534 (1976).

[86] H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, and K. Tanaka, ”Extraordinary carrier multiplication gated by a picosecond electric field pulse,” Nat. Commun. 2, 594 (2011).

[87] Y. Sanari, T. Otobe, Y. Kanemitsu, and H. Hirori, ”Modifying angular and polarization selection rules of high-order harmonics by controlling electron trajectories in k-space,” Nat. Commun. 11, 3069 (2020).

[88] A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. C. Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. v. Schilfgaarde and P. R. F. Barnes, ”Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8, 6317 (2016).

[89] R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, ”Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277 (1997).

[90] F. Lu, P. Xia, Y. Matsumoto, T. Kanai, N. Ishii, and J. Itatani, ”Generation of sub-two-cycle CEP-stable optical pulses at 3.5 µm from a KTA-based optical parametric amplifier with multiple-plate compression,” Opt. Lett. 43, 2720 (2018).

[91] H. Tahara, M. Sakamoto, T. Teranishi, and Y. Kanemitsu, ”Harmonic quantum coherence of multiple excitons in PbS/CdS core-shell nanocrystals,” Phys. Rev. Lett. 119, 247401 (2017).

[92] Y. S. You, D. A. Reis, and S. Ghimire, ”Orientation dependence of temporal and spectral properties of high-order harmonics in solids,” Nat. Phys. 13, 345 (2017).

[93] H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis, ”Highharmonic generation from an atomically thin semiconductor,” Nat. Phys. 13, 262 (2017).

[94] S. T. Cundiff, A. Knorr, J. Feldmann, S. W. Koch, E. O. Gobel, and H. Nickel, ”Rabi flopping in semiconductors,” Phys. Rev. Lett. 73, 1178 (1994). 78

[95] O. D. Mucke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kartner, ”Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett. 89, 127401 (2002).

[96] W. Kuehn, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, and R. Hey, ”Terahertz-induced interband tunneling of electrons in GaAs,” Phys. Rev. B 82, 075204 (2010).

[97] F. Junginger, B. Mayer, C. Schmidt, O. Schubert, S. Mahrlein, A. Leitenstorfer, R. Huber, and A. Pashkin, ”Nonperturbative interband response of a bulk InSb semiconductor driven off resonantly by terahertz electromagnetic few-cycle pulses,” Phys. Rev. Lett. 109, 147403 (2012).

[98] E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, ”Virtual photoconductivity,” Phys. Rev. Lett. 63, 976 (1989).

[99] Y. Shinohara, K. Yabana, Y. Kawashita, J. I. Iwata, T. Otobe, and G. F. Bertsch, ”Coherent phonon generation in time-dependent density functional theory,” Phys. Rev. B 82, 155110 (2010).

[100] A. Sommer, E. M. Bothschafter, S. A. Sato, C. Jakubeit, T. Latka, O. Razskazovskaya, H. Fattahi, M. Jobst, W. Schweinberger, V. Shirvanyan, V. S. Yakovlev, R. Kienberger, K. Yabana, N. Karpowicz, M. Schultze, and F. Krausz, ”Attosecond nonlinear polarization and light-matter energy transfer in solids,” Nature (London) 534, 86 (2016).

[101] P. Jurgens, B. Liewehr, B. Kruse, C. Peltz, D. Engel, A. Husakou, T. Witting, M. Ivanov, M. J. J. Vrakking, T. Fennel, and A. Mermillod-Blondin ”Origin of strong-field-induced low-order harmonic generation in amorphous quartz,” Nat. Phys. 16, 1035 (2020).

[102] C. L. Tang and H. Rabin, ”Selection rules for circularly polarized waves in nonlinear optics,” Phys. Rev. B 3, 4025 (1971).

[103] N. Tancogne-Dejean, O. D. Mucke, F. X. Kartner, and A. Rubio, ”Ellipticity dependence of high-harmonic generation in solids originating from coupled intraband and interband dynamics,” Nat. Commun. 8, 745 (2017).

[104] M. Ivanov, P. B. Corkum, T. Zuo, and A. Bandrauk, ”Routes to control of intense-field atomic polarizability,” Phys. Rev. Lett. 74, 2933 (1995).

[105] I. J. Jong Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, ”Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field,” Phys. Rev. Lett. 94, 243901 (2005).

[106] T. Higuchi, C. Heide, K. Ullmann, H. B. Weber, and P. Hommelhoff, ”Lightfield-driven currents in graphene,” Nature 550, 224 (2017).

[107] C. Heide, T. Higuchi, H. B. Weber, and P. Hommelhoff, ”Coherent electron trajectory control in graphene,” Phys. Rev. Lett. 121, 207401 (2018).

[108] S. T. Cundiff and J. Ye, ”Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325 (2003).

[109] E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, ”Attosecond control and measurement: lightwave electronics,” Science 317, 769 (2007).

[110] K. Uchida, T. Otobe, T. Mochizuki, C. Kim, M. Yoshita, H. Akiyama, L. N. Pfeiffer, K. W. West, K. Tanaka, and H. Hirori, ”Subcycle optical response caused by a terahertz dressed state with phase-locked wave functions,” Phys. Rev. Lett. 117, 277402 (2016).

[111] R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, San Diego, 2008).

[112] V. I. Zavelishko, V. A. Martynov, S. M. Saltiel, and V. G. Tunkin, ”Optical nonlinear fourth-and fifth-order susceptibilities,” Sov. J. Quantum Electron. 5, 1392 (1975).

[113] Mark S. Webb, D. Eimerl, and S. P. Velsko, ”Wavelength insensitive phasematched second-harmonic generation in partially deuterated KDP,” J. Opt. Soc. Am. B 9, 7(1992).

[114] P. S. Banks, M. D. Feit, and M. D. Perry, ”High-intensity third-harmonic generation,” J. Opt. Soc. Am. B 19, 102 (2002).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る