リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「デュアルコム偏光分光法を用いた光学異方性物質の精密複素屈折率計測技術の開発 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

デュアルコム偏光分光法を用いた光学異方性物質の精密複素屈折率計測技術の開発 (本文)

住原, 花奈 慶應義塾大学

2021.03.23

概要

本論文の主要部は、第 3 章から第 5 章までである。その前の第 2 章では、第 3-5 章の理解 に必要な基本事項について説明する。具体的には、デュアルコム分光法の測定原理について、数式を用いて説明する。その後、光の偏光状態の記述方法について説明した後、物質の複素 屈折率の基本事項について説明する。

第 3 章では、「回転補償子型デュアルコム偏光分光法」について説明する。本手法は、デ ュアルコム分光法と、回転補償子法による偏光分析手法を組み合わせたものである。本章の 内容は、デュアルコム分光法を用いて光の偏光を精密に計測した初めての報告である。まず、測定原理について数式を用いて説明し、次に本手法で得られる実験データから偏光状態を解析する方法について説明する。その後、原理検証実験結果・測定精度について説明する。

回転補償子型デュアルコム偏光分光法においては、試料の有無による光の位相差を計測 できない点や測定速度が制限される点、安定性に劣る点などの課題があった。第 4 章では、これらの課題を解決するために新たに開発した、電気光学変調器(EOM)型デュアルコム偏光分光法について説明する。本章の内容は、学会発表の報告を除いて[263]、デュアルコム分光法を用いて物質の複屈折計測をした初めての報告である。先行研究では、試料を回転してその都度計測しているため、計測時間がかかるといった問題や、試料の光学軸の向きの決定の仕方に定量性がないことが課題である。本手法では、光学系を工夫することによって、試料の有無による光の位相差を、透過率と偏光の情報に加えて同時に取得できるようにした。その結果、試料を回転しながら毎回計測する必要がなく、偏光の解析により光学軸の向きを定量的に決めることが可能である。本章では、本手法の原理と解析方法について数式を用いて説明した後、検証実験として行った複素屈折率の異方性計測結果を示す。

第 5 章では、発展研究として、デュアルコム分光法を用いて物質の複素屈折率及び厚さ を精密に決定する手法を提案する。EOM 型デュアルコム偏光分光法には、測定対象が屈折 率分散を持つ場合に複素屈折率を正しく求めることができないという問題があった。本章 ではこの問題を解決し、デュアルコム分光法を用いて屈折率分散を持つ物質の複素屈折率 を求めることに世界で初めて成功した。まず、複素屈折率を精密に求めるために問題となる、デュアルコム分光法で得られる位相における 2π の整数倍の不定性の問題について説明する。その後、本手法の概念についてフローチャートを用いて説明し、検証実験の結果を用いて本 手法の有用性を証明する。

第 6 章では、本論文のまとめと展望を述べる。

この論文で使われている画像

参考文献

[1] Denkschriften der Koniglichen Akademie der Wissenschaften zu Munchen fur die Jahre 1814 und 1815, 5, 193–226 (1817).

[2] https://www.tohoku.ac.jp/japanese/2020/10/press20201016-03-breathomics.html

[3] S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).

[4] T. W. Hänsch, Nobel lecture: “Passion for precision,” Rev. Mod. Phys. 78, 1297 (2006).

[5] J. L. Hall, “Nobel lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279 (2006).

[6] S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B 27, B51 (2010).

[7] N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5, 186 (2011).

[8] S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Japanese J. Appl. Physics, Part 2 Lett. 40, (2001).

[9] S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27, 766 (2002).

[10] F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” 29, 1542 (2004).

[11] I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 11 (2008).

[12] D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284-286 (1984).

[13] R. A. Kaindl, M. A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas,” Nature 423, 734 (2003).

[14] M. C. Nuss, P. M. Mankiewich, M. L. O’Malley, E. H. Westerwick, and P. B. Littlewood, “Dynamic conductivity and coherence peak in YBa2Cu3O7 superconductors,” Phys. Rev. Lett. 66, 3305 (1991).

[15] K. T. Kim, C. Zhang, A. D. Shiner, B. E. Schmidt, F. Légaré, D. M. Villeneuve, and P. B. Corkum, “Petahertz optical oscilloscope,” Nat. Photonics 7, 958 (2013).

[16] 岩國加奈, 光周波数コムを用いた赤外分子分光の高度化

[17] S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra- broadband dual-comb spectroscopy across 1.0-1.9 𝜇m,” Appl. Phys. Express 8, (2015).

[18] 田隅三生, 社会法人日本分光学会, 赤外分光測定法 基礎と最新手法

[19] J. Chamberlain, J. E. Gibbs, and H. A. Gebbie, “The determination of refractive index spectra by fourier spectrometry,” Infrared Phys. 9, 185 (1969).

[20] D. D. Honijk, W. F. Passchier, M. Mandel, and M. N. Afsar, “The determination of complex refractive indices with fourier-transform interferometry-V. Methods for the determination of complex refractive index spectra of liquids in the far infrared spectral region (5-500 cm-1) using a variable pathlength, variable temperature cell,” Infrared Phys. 17, 9 (1977).

[21] W. F. Passchier, D. D. Honijk, M. Mandel, and M. N. Afsar, “The determination of complex refractive indices with fourier transform interferometry-VI. Error analysis of liquid-cell experiments,” Infrared Phys. 17, 381 (1977).

[22] W. F. Passchier, D. D. Honijk, M. Mandel, and M. N. Afsar, “A new method for the determination of complex refractive index spectra of transparent solids in the far-infrared spectral region: Results of pure silicon and crystal quartz,” J. Phys. D. Appl. Phys. 10, 509 (1977).

[23] A. M. Goodman, “Optical interference method for the approximate determination of refractive index and thickness of a transparent layer,” Appl. Opt. 17, 2779 (1978).

[24] R. de L. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Am. 12(6), 547–557 (1926).

[25] H. A. Kramers, “La diffusion de la lumiére par les atomes,” Atti Cong. Intern. Fisica (Transactions of Volta Centenary Congress) 2, 545–557 (1927).

[26] K. F. Pai, T.J. Parker, N.E. Tornberg, R.P. Lowndes, W.G. Chambers, “Determination of the complex refractive indices of solids in the far-infrared by dispersive Fourier transform spectroscopy—I. Alkali halides,” Infrared Physics 18, Issue 3, 199-214 (1978).

[27] K. F. Pai, T.J. Parker, N.E. Tornberg, R.P. Lowndes, W.G. Chambers, “Determination of the complex refractive indices of solids in the far-infrared by dispersive fourier transform spectroscopy—II. Pseudo-displacive ferroelectrics∗,” Infrared Physics 18, Issue 4, 327-336 (1978).

[28] M. Ashida, “Ultra-broadband terahertz wave detection using photoconductive antenna,” Jpn. J. Appl. Phys. 47, 8221 (2008).

[29] L. Zhao, Z. Wang, H. Tang, R. Wang, Y. Cheng, C. Lu, T. Jiang, P. Zhu, L. Hu, W. Song, H. Wang, J. Qiu, R. Kostin, C. Jing, S. Antipov, P. Wang, J. Qi, Y. Cheng, D. Xiang, and J. Zhang, “Terahertz oscilloscope for recording time information of ultrashort electron beams,” Phys. Rev. Lett. 122, 144801 (2019).

[30] I. Coddington, N. Newbury, and W. Swann, "Dual-comb spectroscopy," Optica 3, 414-426 (2016).

[31] S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627 (2007).

[32] C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 1 (2007).

[33] E. R. Crosson, P. Harr, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4 (1999).

[34] T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial and N. SadeghiT, “High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities,” J. Phys. D 37, 2408 (2004).

[35] M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595 (2006).

[36] J. Mandon, G. Guelachvili, N. Picqué, F. Druon, and P. Georges, "Femtosecond laser Fourier transform absorption spectroscopy," Opt. Lett. 32, 1677-1679 (2007).

[37] A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029 (2005).

[38] T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87, 1 (2005).

[39] M. Brehm, A. Schliesser, and F. Keilmann, “Spectroscopic near-field microscopy using frequency combs in the mid-infrared,” Opt. Express 14, 11222 (2006).

[40] T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy,” high-resolution terahertz spectroscopy, Appl. Phys. Lett. 88, (2006).

[41] A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time- domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, (2007).

[42] J. Lee, K. Lee, Y. S. Jang, H. Jang, S. Han, S. H. Lee, K. I. Kang, C. W. Lim, Y. J. Kim, and S. W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4, 4 (2014).

[43] S. Boudreau and J. Genest, “Range-resolved vibrometry using a frequency comb in the OSCAT configuration,” Opt. Express 22, 8101 (2014).

[44] V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” Opt. Express 23, 30557 (2015).

[45] Y. Liu, X. Zhao, G. Hu, C. Li, B. Zhao, and Z. Zheng, "Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser," Opt. Express 24, 21392-21398 (2016).

[46] X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24, 21833 (2016).

[47] V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41, 4190 (2016).

[48] S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108, 1 (2016).

[49] M. Rösch, G. Scalari, G. Villares, L. Bosco, M. Beck, and J. Faist, On-chip, “self-detected terahertz dual-comb source,” Appl. Phys. Lett. 108, (2016).

[50] B. Lin, X. Zhao, M. He, Y. Pan, J. Chen, S. Cao, Y. Lin, Q. Wang, Z. Zheng, and Z. Fang, “Dual- comb absolute distance measurement based on a dual-wavelength passively mode-locked laser,” IEEE Photonics J. 9, (2017).

[51] S. Wang, X. Fan, B. Xu, and Z. He, “Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy,” Opt. Lett. 42, 3984 (2017).

[52] T. Dcs and W. Cnts, “Free-running mode-locked laser based dual-comb spectroscopy,” 43, 1 (2018).

[53] E. Lucas, G. Lihachev, R. Bouchand, N. G. Pavlov, A. S. Raja, M. Karpov, M. L. Gorodetsky, and T. J. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12, 699 (2018).

[54] R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual- wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26, 28302 (2018).

[55] J. Olson, Y. H. Ou, A. Azarm, and K. Kieu, “Bi-Directional mode-locked thulium fiber laser as a single-cavity dual-comb source,” IEEE Photonics Technol. Lett. 30, 1772 (2018).

[56] R. D. Baker, N. T. Yardimci, Y. H. Ou, K. Kieu, and M. Jarrahi, “Self-triggered Asynchronous Optical Sampling Terahertz Spectroscopy using a Bidirectional Mode-locked Fiber Laser,” Sci. Rep. 8, 1 (2018).

[57] A. Rolland, P. Li, N. Kuse, J. Jiang, M. Cassinerio, C. Langrock, and M. E. Fermann, “Ultra- broadband dual-branch optical frequency comb with 10 −18 instability,” Optica 5, 1070 (2018).

[58] N. Abdukerim, M. I. Kayes, A. Rekik, and M. Rochette, “Bidirectional mode-locked thulium- doped fiber laser,” Appl. Opt. 57, 7198 (2018).

[59] D. R. Carlson, D. D. Hickstein, D. C. Cole, S. A. Diddams, and S. B. Papp, “Dual-comb interferometry via repetition rate switching of a single frequency comb,” Opt. Lett. 43, 3614 (2018).

[60] G. Hu, T. Mizuguchi, R. Oe, K. Nitta, X. Zhao, T. Minamikawa, T. Li, Z. Zheng, and T. Yasui, “Dual terahertz comb spectroscopy with a single free-running fibre laser,” Sci. Rep. 8, 1 (2018).

[61] S. Wang, X. Fan, B. Xu, B. Wang, J. Du, and Z. He, “Hybrid dual-comb interferometer with easily established mutual coherence and a very high refresh rate,” Opt. Lett. 43, 3441 (2018).

[62] J. Guo, Y. Ding, X. Xiao, L. Kong, and C. Yang, “Multiplexed static FBG strain sensors by dual- comb spectroscopy with a free running fiber laser, “2018 Conf. Lasers Electro-Optics, CLEO 2018 - Proc. 26, 16147 (2018).

[63] W. Wang, W. Zhang, Z. Lu, S. T. Chu, B. E. Little, Q. Yang, L. Wang, and W. Zhao, “Self-locked orthogonal polarized dual comb in a microresonator,” Photonics Res. 6, 363 (2018).

[64] R. Liao, Y. Song, W. Liu, H. Shi, L. Chai, and M. Hu, “Dual-comb spectroscopy with a single free-running thulium-doped fiber laser,” Opt. Express 26, 11046 (2018).

[65] N. B. Hébert, D. G. Lancaster, V. Michaud-Belleau, G. Y. Chen, and J. Genest, “Highly coherent free-running dual-comb chip platform,” Opt. Lett. 43, 1814 (2018).

[66] Y. Li, K. Yin, X. Zhang, X. Zheng, X. Cheng, and T. Jiang, “All-Fiber Bidirectional Mode-Locked Ultrafast Fiber Laser at 2 μm,” IEEE Photonics J. 11, (2019).

[67] L. A. Sterczewski, A. Przewłoka, W. Kaszub, and J. Sotor, “Computational Doppler-limited dual- comb spectroscopy with a free-running all-fiber laser,” APL Photonics 4, (2019).

[68] Z. Li, W. Wan, K. Zhou, X. Liao, S. Yang, Z. Fu, J. C. Cao, and H. Li, “On-Chip Dual-Comb Source Based on Terahertz Quantum Cascade Lasers under Microwave Double Injection,” Phys. Rev. Appl. 12, 1 (2019).

[69] J. Fellinger, A. S. Mayer, G. Winkler, W. Grosinger, G.-W. Truong, S. Droste, C. Li, C. M. Heyl, I. Hartl, and O. H. Heckl, "Tunable dual-comb from an all-polarization-maintaining single-cavity dual-color Yb:fiber laser," Opt. Express 27, 28062-28074 (2019).

[70] Z. Deng, Y. Liu, C. Ouyang, W. Zhang, C. Wang, and W. Li, “Mutually coherent dual-comb source generated from a free-running linear fiber laser,” Results Phys. 14, 102364 (2019).

[71] K. Zhao, H. Jia, P. Wang, J. Guo, X. Xiao, and C. Yang, “Free-running dual-comb fiber laser mode-locked by nonlinear multimode interference,” Opt. Lett. 44, 4323 (2019).

[72] P. Guay, N. B. Hébert, V. Michaud-Belleau, D. G. Lancaster, and J. Genest, “Methane spectroscopy using a free-running chip-based dual-comb laser,” Opt. Lett. 44, 4375 (2019).

[73] S. Saito, M. Yamanaka, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “All- polarization-maintaining Er-doped dual comb fiber laser using single-wall carbon nanotubes,” Opt. Express 27, 17868 (2019).

[74] J. Guo, K. Zhao, B. Zhou, W. Ning, K. Jiang, C. Yang, L. Kong, and Q. Dai, “Wearable and Skin- Mountable Fiber-Optic Strain Sensors Interrogated by a Free-Running, Dual-Comb Fiber Laser,” Adv. Opt. Mater. 7, 1 (2019).

[75] X. Luo, T.g H. Tuan, T. S. Saini, H. P. T.Nguyen, T.Suzuki, and Y.e Ohishi, "Tunable and switchable all-fiber dual-wavelength mode locked laser based on Lyot filtering effect," Opt. Express 27, 14635-14647 (2019).

[76] Y. Nakajima, Y. Hata, and K. Minoshima, "All-polarization-maintaining, polarization- multiplexed, dual-comb fiber laser with a nonlinear amplifying loop mirror," Opt. Express 27, 14648-14656 (2019).

[77] J. Chen, X. Zhao, Z. Yao, T. Li, Q. Li, S. Xie, J. Liu, and Z. Zheng, “Dual-comb spectroscopy of methane based on a free-running Erbium-doped fiber laser,” Opt. Express 27, 11406 (2019).

[78] E. Baumann, E. V. Hoenig, E. F. Perez, G. M. Colacion, F. R. Giorgetta, K. C. Cossel, G. Ycas, D. R. Carlson, D. D. Hickstein, K. Srinivasan, S. B. Papp, N. R. Newbury, and I. Coddington, “Dual-comb spectroscopy with tailored spectral broadening in Si3N4 nanophotonics,” Opt. Express 27, 11869 (2019).

[79] Y. Nakajima, Y. Hata, and K. Minoshima, "High-coherence ultra-broadband bidirectional dual- comb fiber laser," Opt. Express 27, 5931-5944 (2019).

[80] J. Nürnberg, C. G. E. Alfieri, Z. Chen, D. Waldburger, N. Picqué, and U. Keller, “An unstabilized femtosecond semiconductor laser for dual-comb spectroscopy of acetylene,” Opt. Express 27, 3190 (2019).

[81] Z. Wang, Q. Jiang, Z. Tang, and Z. Zhang, "Complex pulsating dynamics of counter-propagating solitons in a bidirectional ultrafast fiber laser," Opt. Express 28, 28209-28217 (2020).

[82] B. Li, J. Xing, D. Kwon, Y. Xie, N. Prakash, J. Kim, and S.-W. Huang, “Bidirectional mode- locked all-normal dispersion fiber laser,” Optica 7, 961 (2020).

[83] Y. Song, G. Shao, L. Zhao, D. Shen, H. Zhang, and D. Tang, “Dual-wavelength dissipative solitons in an anomalous-dispersion-cavity fiber laser,” Nanophotonics 9, 2361 (2020).

[84] X. Zhao, J. Yang, J. Liu, H. Shao, X. Zhang, Q. Li, Z. Zheng, Z. Zheng, and Z. Zheng, “Dynamic quasi-distributed ultraweak fiber bragg grating array sensing enabled by depth-resolved dual- comb spectroscopy,” IEEE Trans. Instrum. Meas. 69, 5821 (2020).

[85] K. Zhao, C. Gao, X. Xiao, and C. Yang, “Buildup dynamics of asynchronous vector solitons in a polarization-multiplexed dual-comb fiber laser,” Opt. Lett. 45, 4040 (2020).

[86] X. Luo, T. H. Tuan, T. S. Saini, H. P. T. Nguyen, T. Suzuki, and Y. Ohishi, “Switchable dual- wavelength mode-locked fiber laser using Saganc loop mirror,” Opt. Commun. 463, 125457 (2020).

[87] X. Jin, M. Zhang, G. Hu, Q. Wu, Z. Zheng, and T. Hasan, “Broad bandwidth dual-wavelength fiber laser simultaneously delivering stretched pulse and dissipative soliton,” Opt. Express 28, 6937 (2020).

[88] L. Guo, L. Wang, Q. Sun, M. Liu, G. Wang, W. Wang, P. Xie, W. Fan, and W. Zhao, “Mid-infrared dual-comb generation via the cross-phase modulation effect in a normal-dispersion microcavity,” Appl. Opt. 59, 2101 (2020).

[89] B. Lomsadze, K. M. Fradet, and R. S. Arnold, "Elastic tape behavior of a bi-directional Kerr-lens mode-locked dual-comb ring laser," Opt. Lett. 45, 1080-1083 (2020).

[90] M. Liu, T.-J. Li, A.-P. Luo, W.-C. Xu, and Z.-C. Luo, ““Periodic” soliton explosions in a dual- wavelength mode-locked Yb-doped fiber laser,” Photonics Res. 8, 246 (2020).

[91] K. Xu, X. Zhao, Z. Wang, J. Chen, T. Li, Z. Zheng, and W. Ren, “Multipass-assisted dual-comb gas sensor for multi-species detection using a free-running fiber laser,” Appl. Phys. B 126, 39 (2020).

[92] D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688 (2014).

[93] P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27, 1309 (2015).

[94] P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23, 21149 (2015).

[95] G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27 (2016).

[96] J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber bragg gratings with electro-optical dual optical frequency combs,” Sensors (Switzerland) 16, (2016).

[97] T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3, 748 (2016).

[98] A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity- enhanced dual-comb spectroscopy,” Opt. Express 24, 10424 (2016).

[99] A. E. Akosman and M. Y. Sander, “Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses,” Opt. Express 25, 18592 (2017).

[100] E. L. Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Opt. Express 25, 16427 (2017).

[101] S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356, 1164 (2017).

[102] N. B. Hébert, J. Genest, J.-D. Deschênes, H. Bergeron, G. Y. Chen, C. Khurmi, and D. G. Lancaster, "Self-corrected chip-based dual-comb spectrometer," Opt. Express 25, 8168-8179 (2017).

[103] O. E. Bonilla-Manrique, P. Martin-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High- resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 140 (2017).

[104] B. Jerez, P. Martín-Mateos, F. Walla, C. De Dios, and P. Acedo, “Flexible Electro-Optic, Single-Crystal Difference Frequency Generation Architecture for Ultrafast Mid-Infrared Dual- Comb Spectroscopy,” ACS Photonics 5, 2348 (2018).

[105] M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip- based mid-infrared dual-comb spectroscopy, “Nat. Commun. 9, 32713 (2018).

[106] P. Guay, J. Genest, and A. J. Fleisher, “Precision spectroscopy of H13CN using a free-running, all-fiber dual electro-optic frequency comb system,” Opt. Lett. 43, 1407 (2018).

[107] A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, 1 (2018).

[108] A. Parriaux, K. Hammani, and G. Millot, “Electro-optic dual-comb spectrometer in the thulium amplification band for gas sensing applications,” Opt. Lett. 44, 4335 (2019).

[109] K. Fdil, V. Michaud-Belleau, N. B. Hébert, P. Guay, A. J. Fleisher, J.-D. Deschênes, and J. Genest, “Dual electro-optic frequency comb spectroscopy using pseudo-random modulation,” Opt. Lett. 44, 4415 (2019).

[110] V. I. D. Uran and L. E. O. D. Jevarhidjian, “Bidirectional frequency-shifting loop for dual- comb spectroscopy,” 44, 3789 (2019).

[111] B. Xu, X. Fan, S. Wang, and Z. He, “Broadband and high-resolution electro-optic dual-comb interferometer with frequency agility,” Opt. Express 27, 9266 (2019).

[112] B. Jerez, F. Walla, A. Betancur, P. Martín-Mateos, C. de Dios, and P. Acedo, “Electro-optic THz dual-comb architecture for high-resolution, absolute spectroscopy,” Opt. Lett. 44, 415 (2019).

[113] S. Wang, X. Fan, B. Xu, and Z. He, “Fast MHz spectral-resolution dual-comb spectroscopy with electro-optic modulators,” Opt. Lett. 44, 65 (2019).

[114] R. Liao, H. Tian, W. Liu, R. Li, Y. Song, and M. Hu, “Dual-comb generation from a single laser source: Principles and spectroscopic applications towards mid-IR - A review,” J. Phys Photonics 2, 42006 (2020).

[115] B. Wang, Z. Yang, X. Zhang, and X. Yi, “Vernier frequency division with dual- microresonator solitons,” Nat. Commun. 11, 1 (2020).

[116] L. Deniel, E. Weckenmann, D. P. Galacho, C. Alonso-Ramos, F. Boeuf, L. Vivien, and D. Marris-Morini, “Frequency-tuning dual-comb spectroscopy using silicon Mach-Zehnder modulators,” Opt. Express 28, 10888 (2020).

[117] P. Martín-Mateos, F. U. Khan, and O. E. Bonilla-Manrique, “Direct hyperspectral dual-comb imaging”, Optica 7, 199 (2020).

[118] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs, “Science 332, 555 (2011).

[119] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, 567 (2018).

[120] I. Coddington, W. C. Swann, L. Nenadovic and N. R. Newbury, “Rapid and precise absolute distance measurement at long range,” Nat. Photon. 3, 351-356 (2009).

[121] S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21, 7411 (2013).

[122] S. Zhou, S. Xiong, Z. Zhu, and G. Wu, “Simplified phase-stable dual-comb interferometer for short dynamic range distance measurement,” Opt. Express 27, 22868 (2019).

[123] Z. Zhu, K. Ni, Q. Zhou, and G. Wu, “Two-color phase-stable dual-comb ranging without precise environmental sensing,” Opt. Express 27, 4660 (2019).

[124] S. Zhou, C. Lin, Y. Yang, and G. Wu, “Multi-pulse sampling dual-comb ranging method,” Opt. Express 28, 4058 (2020).

[125] B. Lin, X. Zhao, M. He, Y. Pan, J. Chen, S. Cao, Y. Lin, Q. Wang, Z. Zheng, and Z. Fang, “Dual-comb absolute distance measurement based on a dual-wavelength passively mode-locked laser,” IEEE Photonics J. 9, (2017).

[126] J. Kang, P. Feng, B. Li, C. Zhang, X. Wei, E. Y. Lam, K. K. Tsia, and K. K. Y. Wong, “Video- rate centimeter-range optical coherence tomography based on dual optical frequency combs by electro-optic modulators,” Opt. Express 26, 24928 (2018).

[127] G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290 (2014).

[128] S. Coburn, C. B. Alden, R. Wright, K. Cossel, E. Baumann, G.-W. Truong, F. Giorgetta, C. Sweeney, N. R. Newbury, K. Prasad, I. Coddington, and G. B. Rieker, “Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer,” Optica 5, 320 (2018).

[129] H.-G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16, 3430 (2008).

[130] E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5, 634 (2018).

[131] X. Dong, X. Zhou, J. Kang, L. Chen, Z. Lei, C. Zhang, K. K. Y. Wong, and X. Zhang, “Ultrafast time-stretch microscopy based on dual-comb asynchronous optical sampling,” Opt. Lett. 43, 2118 (2018).

[132] D. Microscopy, E. Hase, T. Minamikawa, S. Miyamoto, R. Ichikawa, and Y. Hsieh, “Phase Imaging with Spectrally Encoded Dual-Comb Microescopy,” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 25, 1 (2019).

[133] J. L. Peng, T. A. Liu, and R. H. Shu, “Optical frequency counter based on two mode-locked fiber laser combs,” Appl. Phys. B 92, 513 (2008).

[134] F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high- resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853 (2010).

[135] I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500 thz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228 (2012).

[136] T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” 37, 4498 (2012).

[137] T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013).

[138] N. Coluccelli, C. R. Howle, K. McEwan, Y. Wang, T. T. Fernandez, A. Gambetta, P. Laporta, and G. Galzerano, “Fiber-format dual-comb coherent Raman spectrometer,” Opt. Lett. 42, 4683 (2017).

[139] K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42, 318 (2017).

[140] M. Yan, L. Zhang, Q. Hao, X. Shen, X. Qian, H. Chen, X. Ren, and H. Zeng, “Surface- Enhanced Dual-Comb Coherent Raman Spectroscopy with Nanoporous Gold Films,” Laser Photonics Rev. 12, 10 (2018).

[141] T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, “V. Ramaiah- Badarla, J. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, Microfluidic single- particle chemical analyzer with dual-comb coherent Raman spectroscopy,” Opt. Lett. 43, 4057 (2018).

[142] T. Wu, K. Chen, H. Wei, and Y. Li, “Repetition frequency modulated fiber laser for coherent anti-Stokes Raman scattering,” Opt. Lett. 45, 407 (2020).

[143] R. Zhang, Z. Zhu, and G. Wu, “Static pure strain sensing using dual–comb spectroscopy with FBG sensors,” Opt. Express 27, 34269 (2019).

[144] J. Guo, Y. Ding, X. Xiao, L. Kong, and C. Yang, “Multiplexed static FBG strain sensors by dual-comb spectroscopy with a free running fiber laser,” 2018 Conf. Lasers Electro-Optics, CLEO 2018 - Proc. 26, 16147 (2018).

[145] A. Asahara, A. Nishiyama, S. Yoshida, K. Kondo, Y. Nakajima, and K. Minoshima, “Dual- comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41, 4971 (2016).

[146] K. A. Sumihara, S. Okubo, K. Oguchi, M. Okano, H. Inaba, and S. Watanabe, “Polarization- sensitive dual-comb spectroscopy with an electro-optic modulator for determination of anisotropic optical responses of materials,” Opt. Express 27, 35141 (2019).

[147] K. A. Sumihara, S. Okubo, M. Okano, H. Inaba, and S. Watanabe, “Polarization-sensitive dual-comb spectroscopy,” J. Opt. Soc. B 34, 154 (2017).

[148] T. Minamikawa, Y. Da Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8, 610 (2017).

[149] H. Koresawa, M. Gouryeb, K. Shibuya, T. Mizuno, E. Hase, Y. Tokizane, R. Oe, T. Minamikawa, and T. Yasui, “Dynamic characterization of polarization property in liquid-crystal- on-silicon spatial light modulator using dual-comb spectroscopic polarimetry,” Opt. Express 28, 23584 (2020).

[150] K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui, and T. Iwata, “Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase,” Opt. Express 25, 21947 (2017).

[151] L. A. Sterczewski, J. Westberg, Y. Yang, D. Burghoff, J. Reno, Q. Hu, and G. Wysocki, “Terahertz hyperspectral imaging with dual chip-scale combs,” Optica 6, 766 (2019).

[152] P. J. Schroeder, M. J. Cich, J. Yang, W. C. Swann, I. Coddington, N. R. Newbury, B. J. Drouin, and G. B. Rieker, “Broadband, high-resolution investigation of advanced absorption line shapes at high temperature,” Phys. Rev. A 96, (2017).

[153] Y. Shimizu, S. Okubo, A. Onae, K. M. T. Yamada, and H. Inaba, “Molecular gas thermometry on acetylene using dual-comb spectroscopy: analysis of rotational energy distribution,” Appl. Phys. B Lasers Opt. 124, 1 (2018).

[154] Y. Zheng Guo, M. Yan, Q. Hao, K. wen Yang, X. ling Shen, and H. ping Zeng, “Rapid thermal sensors with high resolution based on an adaptive dual-comb system,” Front. Inf. Technol. Electron. Eng. 20, 674 (2019).

[155] E. L. Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Opt. Express 25, 16427 (2017).

[156] A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photonics 2, (2017).

[157] A. Asahara, Y. Arai, T. Saito, J. Ishi-Hayase, K. Akahane, and K. Minoshima, “Dual-comb- based asynchronous pump-probe measurement with an ultrawide temporal dynamic range for characterization of photo-excited InAs quantum dots,” Appl. Phys. Express 13, (2020).

[158] B. Lomsadze and S. T. Cundiff, “Multi-heterodyne two dimensional coherent spectroscopy using frequency combs,” Sci. Rep. 7, 1 (2017).

[159] J. L. Klocke, M. Mangold, P. Allmendinger, A. Hugi, M. Geiser, P. Jouy, J. Faist, and T. Kottke, “Single-Shot Sub-microsecond Mid-infrared Spectroscopy on Protein Reactions with Quantum Cascade Laser Frequency Combs,” Anal. Chem. 90, 10494 (2018).

[160] J. W. Kim, B. Cho, T. H. Yoon, and M. Cho, “Dual-Frequency Comb Transient Absorption: Broad Dynamic Range Measurement of Femtosecond to Nanosecond Relaxation Processes,” J. Phys. Chem. Lett. 9, 1866 (2018).

[161] M. A. Abbas, Q. Pan, J. Mandon, S. M. Cristescu, F. J. M. Harren, and A. Khodabakhsh, “Time-resolved mid-infrared dual-comb spectroscopy,” Sci. Rep. 9, 1 (2019).

[162] D. I. Herman, E. M. Waxman, G. Ycas, F. R. Giorgetta, N. R. Newbury, and I. R. Coddington, “Real-time liquid-phase organic reaction monitoring with mid-infrared attenuated total reflectance dual frequency comb spectroscopy,” J. Mol. Spectrosc. 356, 39 (2019).

[163] P. L. Luo and E. C. Horng, “Simultaneous determination of transient free radicals and reaction kinetics by high-resolution time-resolved dual-comb spectroscopy,” Commun. Chem. 3, 1 (2020).

[164] L. A. Sterczewski, J. Westberg, Y. Yang, D. Burghoff, J. Reno, Q. Hu, and G. Wysocki, “Terahertz Spectroscopy of Gas Mixtures with Dual Quantum Cascade Laser Frequency Combs,” ACS Photonics 7, 1082 (2020).

[165] E. Lins, S. Read, B. Unni, S. M. Rosendahl, and I. J. Burgess, “Microsecond Resolved Infrared Spectroelectrochemistry Using Dual Frequency Comb IR Lasers,” Anal. Chem. 92, 6241 (2020).

[166] N. H. Pinkowski, Y. Ding, C. L. Strand, R. K. Hanson, R. Horvath, and M. Geiser, “Dual- comb spectroscopy for high-temperature reaction kinetics,” Meas. Sci. Technol. 31, (2020).

[167] J. Bergevin, T. H. Wu, J. Yeak, B. E. Brumfield, S. S. Harilal, M. C. Phillips, and R. J. Jones, “Dual-comb spectroscopy of laser-induced plasmas,” Nat. Commun. 9, 1 (2018).

[168] Y. Zhang, C. Lecaplain, R. R. D. Weeks, J. Yeak, S. S. Harilal, M. C. Phillips, and R. Jason Jones, “Time-resolved dual-comb measurement of number density and temperature in a laser- induced plasma,” Opt. Lett. 44, 3458 (2019).

[169] J. Guo, K. Zhao, B. Zhou, W. Ning, K. Jiang, C. Yang, L. Kong, and Q. Dai, “Wearable and Skin-Mountable Fiber-Optic Strain Sensors Interrogated by a Free-Running, Dual-Comb Fiber Laser,” Adv. Opt. Mater. 7, 1 (2019).

[170] S. Ghosh and G. Eisenstein, “Fast High-Resolution Measurement of an Arbitrary Optical Pulse Using Dual-Comb Spectroscopy,” Phys. Rev. Appl. 14, 1 (2020).

[171] T. Wildi, T. Voumard, V. Brasch, G. Yilmaz, and T. Herr, “Photo-acoustic dual-frequency comb spectroscopy,” Nat. Commun. 11, 1 (2020).

[172] J. T. Friedlein, E. Baumann, K. A. Briggman, G. M. Colacion, F. R. Giorgetta, A. M. Goldfain, D. I. Herman, E. V. Hoenig, J. Hwang, N. R. Newbury, E. F. Perez, C. S. Yung, I. Coddington, and K. C. Cossel, “Dual-comb photoacoustic spectroscopy,” Nat. Commun. 11, (2020).

[173] 佐々田博之, 分光研究第 62 巻第 2 号(日本分光学会 2013)

[174] A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).

[175] 藤原裕之著 分光エリプソメトリー

[176] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), Chap. 1.

[177] R. C. Jones, “A new calculus for the treatment of optical systems. I. description and discussion of the calculus,” J. Opt. Soc. Am. 31(7), 488–493 (1941).

[178] Y. Nakajima, H. Inaba, F. L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281, 4484–4487 (2008).

[179] N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929 (2010).

[180] J. M. Bennett, Handbook of Optics, 2nd ed. (ed. M. Bass), (McGraw-Hill, 1995), Vol. 1, Chap. 5.

[181] G. N. Ramachandran and S. Ramaseshan, “Magneto-optic rotation in birefringent media— application of the Poincaré sphere,” J. Opt. Soc. Am. 42(1), 49–56 (1952).

[182] H. G. Jekrard, “Transmission of light through birefringent and optically active media: the Poincaré sphere,” J. Opt. Soc. Am. 44(8), 634–640 (1954).

[183] M. Okano and S. Watanabe, “Anisotropic optical response of optically opaque elastomers with conductive fillers as revealed by terahertz polarization spectroscopy,” Sci. Rep. 6(1), 39079 (2016).

[184] S. R. Tripathi, M. Aoki, M. Takeda, T. Asahi, I. Hosako, and N. Hiromoto, “Accurate complex refractive index with standard deviation of ZnTe measured by terahertz time domain spectroscopy,” Jpn. J. Appl. Phys. 52, (2013).

[185] B. Edlén, “The refractive index of air,” Metrologia 2, 71 (1966).

[186] P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566 (1996).

[187] J. C. Owens, “Optical Refractive Index of Air: Dependence on Pressure, Temperature and Composition,” Appl. Opt. 6, 51 (1967).

[188] 足立和俊, 山口勝己, 本田索郎著, 超精密加工機における位置決めの高精度化-環境補正装置によるレーザ測長誤差提言-, 大阪府立産業技術総合研究所報告 No.21, 2007.

[189] T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, “Material parameter estimation with terahertz time-domain spectroscopy,” J. Opt. Soc. Am. A 18, 1562 (2001).

[190] H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561 (1980).

[191] https://www.jasco.co.jp/jpn/technique/internet-seminar/cdord/cd3.html

[192] https://www.koike.appi.keio.ac.jp/

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る