リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Targeted epigenetic induction of mitochondrial biogenesis enhances antitumor immunity in mouse model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Targeted epigenetic induction of mitochondrial biogenesis enhances antitumor immunity in mouse model

Malinee, Madhu 京都大学 DOI:10.14989/doctor.k23603

2022.01.24

概要

Cancer immunotherapy by blockade of PD-1 (an immunoinhibitory receptor expressed on activated T cells) has gained exponential interest over the last decade because of long-term clinical benefits, and effectiveness over a wide-range of cancer types. However, almost half of the cancer patients show less or no response to PD-1 blockade-based monotherapy. This limitation substantiates the need of developing small-molecule based therapeutic drugs that aid to functions of effector T cells and synergize with PD-1 blockade. Recent reports suggest critical role of mitochondria in deciding T cell priming, activation and fate determination. In addition, effector T cells become less active with reduced PGC-1 expression (a known master regulator of mitochondrial metabolism and biogenesis) in the suppressive tumor microenvironment. This suggest that enhancing mitochondrial activation and biogenesis in CD8+ T cells could be an effective approach to enhance efficacy of PD-1 blockade therapy. Pyrrole–imidazole polyamides (PIPs) are small DNA ligands that can be pre-programmed to recognize target DNA sequence and guide epigenetic modulators to control the gene expression.

In this study, an epigenetic modulator termed EnPGC-1 (BI-PIP) was designed to augment the expression of PGC-1α/β. EnPGC-1 functions as a bifunctional recruiter where the BI (bromodomain inhibitor) moiety of EnPGC-1 recognizes and recruit the bromodomain (BD) of p300 and further the histone acetyl transferase (HAT) domain of p300 perform locus-specific acetylation in the PIP-binding region of PGC-1α/β. In the in vitro cell based evaluation, EnPGC-1 shown to enhance transcript and protein level of PGC-1 and PGC-1 in murine primary CD8+ T cells. EnPGC-1 enhances mitochondrial activation parameters (e.g., mass, potential, mSox) as well as mitochondrial respiration (measured by oxygen consumption rate, OCR). ChIP-sequencing analysis of H3K27Ac revealed a notable enrichment in the promoter region of both PGC-1 and PGC-1 that overlaps with EnPGC-1 binding sites. Encouraged with in vitro findings, we further tested whether EnPGC-1 synergize with PD-1 blockade therapy. EnPGC-1 in combination with PD-1 blockade accelerates the tumor clearance as well as improves the overall survival in MC38 tumorbearing hosts compared to PD-1 blockade alone or untreated group. Analysis of immune effector CD8+ T cells from draining lymph node and tumor mass post therapy shows better mitochondrial activation, mitochondrial respiration, fatty acid oxidation, and more T cell infiltration with enhanced effector functions (e.g., IFN gamma expression) to the tumor mass in the combination group. The increment in OCR/ECAR ratio supports a feature of long-live memory like population which is also evident by enhanced Bcl2 level, enhanced spare respiratory capacity and fatty acid oxidation in CD8+ T cells in combination group over PD-1 blockade alone. Moreover, genome-wide gene expression analysis in the in vitro treated CD8+ T cells suggest EnPGC-1 mediated PGC-1α/β upregulation drives differential gene expression that regulates T cell activation, proliferation, OXPHOS and FAO in CD8+ T cells compared to control groups.

The data generated by independent lines of evidence, suggested the recruitment of p300 acetyltransferase as the potential mechanism of EnPGC-1-mediated gene activation. This study underscores the novel clinical application of first DNA-based designer molecule, EnPGC-1, for therapeutic purposes in the cancer treatment of less responsive cancer patients by combination therapy of EnPGC-1 with PD-1 blockade.

この論文で使われている画像

参考文献

Azimi, F., Scolyer, R.A., Rumcheva, P., Moncrieff, M., Murali, R., Mccarthy, S.W., Saw, R.P., and Thompson, J.F. (2012). Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J. Clin. Oncol. 30, 2678–2683.

Bai, C., Gao, S., Hu, S., Liu, X., Li, H., Dong, J., Huang, A., Zhu, L., Zhou, P., Li, S., and Shao, N. (2020). Self-assembled multivalent aptamer nanoparticles with potential CAR-like characteristics could activate T cells and inhibit melanoma growth. Mol. Ther. Oncolytics 17, 9–20.

Buck, M.D., O’sullivan, D., Klein Geltink, R.I., Curtis, J.D., Chang, C.H., Sanin, D.E., Qiu, J., Kretz, O., Braas, D., Van Der Windt, G.J., et al. (2016). Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76.

Buck, M.D., Sowell, R.T., Kaech, S.M., and Pearce, E.L. (2017). Metabolic instruction of immunity. Cell 169, 570–586.

Chamoto, K., Chowdhury, P.S., Kumar, A., Sonomura, K., Matsuda, F., Fagarasan, S., and Honjo, T. (2017). Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc. Natl. Acad. Sci. U S A 114, E761–E770.

Chamoto, K., Hatae, R., and Honjo, T. (2020). Current issues and perspectives in PD-1 blockade cancer immunotherapy. Int. J. Clin. Oncol. 25, 790–800. Choi, J.M., and Bothwell, A.L. (2012). The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Mol. Cells 33, 217–222.

Chowdhury, P.S., Chamoto, K., Kumar, A., and Honjo, T. (2018). PPARinduced fatty acid oxidation in T cells increases the number of tumor-reactive CD8(+) T cells and facilitates anti-PD-1 therapy. Cancer Immunol. Res. 6, 1375–1387.

Couzin-Frankel, J. (2013). Breakthrough of the year 2013. Cancer immunotherapy. Science 342, 1432–1433.

Dancy, B.M., Crump, N.T., Peterson, D.J., Mukherjee, C., Bowers, E.M., Ahn, Y.-H., Yoshida, M., Zhang, J., Mahadevan, L.C., Meyers, D.J., et al. (2012). Live-cell studies of p300/CBP histone acetyltransferase activity and inhibition. ChemBioChem 13, 2113–2121.

Dervan, P.B., and Edelson, B.S. (2003). Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Curr. Opin. Struct. Biol. 13, 284–299.

Dunn, G.P., Old, L.J., and Schreiber, R.D. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148.

Fife, B.T., and Bluestone, J.A. (2008). Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol. Rev. 224, 166–182.

Fukasawa, A., Aoyama, T., Nagashima, T., Fukuda, N., Ueno, T., Sugiyama, H., Nagase, H., and Matsumoto, Y. (2009). Pharmacokinetics of pyrrole-imidazole polyamides after intravenous administration in rat. Biopharm. Drug Dispos. 30, 81–89.

Gallagher, S.J., Shklovskaya, E., and Hersey, P. (2017). Epigenetic modulation in cancer immunotherapy. Curr. Opin. Pharmacol. 35, 48–56.

Han, L., Pandian, G.N., Chandran, A., Sato, S., Taniguchi, J., Kashiwazaki, G., Sawatani, Y., Hashiya, K., Bando, T., Xu, Y., et al. (2015). A synthetic DNAbinding domain guides distinct chromatin-modifying small molecules to activate an identical gene network. Angew. Chem. Int. Ed. 54, 8700–8703.

Hatae, R., Chamoto, K., Kim, Y.H., Sonomura, K., Taneishi, K., Kawaguchi, S., Yoshida, H., Ozasa, H., Sakamori, Y., Akrami, M., et al. (2020). Combination of host immune metabolic biomarkers for the PD-1 blockade cancer immunotherapy. JCI Insight 5, e133501.

Hidaka, T., Tsubono, Y., Hashiya, K., Bando, T., Pandian, G.N., and Sugiyama, H. (2020). Enhanced nuclear accumulation of pyrrole–imidazole polyamides by incorporation of the tri-arginine vector. Chem. Commun. 56, 12371–12374.

Hiraoka, K., Inoue, T., Taylor, R.D., Watanabe, T., Koshikawa, N., Yoda, H., Shinohara, K.-I., Takatori, A., Sugimoto, H., Maru, Y., et al. (2015). Inhibition of KRAS codon 12 mutants using a novel DNA-alkylating pyrrole–imidazole polyamide conjugate. Nat. Commun. 6, 6706.

Idos, G.E., Kwok, J., Bonthala, N., Kysh, L., Gruber, S.B., and Qu, C. (2020). The prognostic implications of tumor infiltrating lymphocytes in colorectal cancer: a systematic review and meta-analysis. Sci. Rep. 10, 3360.

Iwai, Y., Ishida, M., Tanaka, Y., Okazaki, T., Honjo, T., and Minato, N. (2002). Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. U S A 99, 12293–12297.

Juneja, V.R., Mcguire, K.A., Manguso, R.T., Lafleur, M.W., Collins, N., Haining, W.N., Freeman, G.J., and Sharpe, A.H. (2017). PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 214, 895–904. Kobayashi, H., Hatakeyama, H., Nishimura, H., Yokota, M., Suzuki, S., Tomabechi, Y., Shirouzu, M., Osada, H., Mimaki, M., Goto, Y.-I., and Yoshida, M. (2021). Chemical reversal of abnormalities in cells carrying mitochondrial DNA mutations. Nat. Chem. Biol. 17, 335–343.

Kressler, D., Schreiber, S.N., Knutti, D., and Kralli, A. (2002). The PGC-1- related protein PERC is a selective coactivator of estrogen receptor alpha. J. Biol. Chem. 277, 13918–13925.

Kumar, A., and Chamoto, K. (2021). Immune metabolism in PD-1 blockadebased cancer immunotherapy. Int. Immunol. 33, 17–26.

Kumar, A., Chamoto, K., Chowdhury, P.S., and Honjo, T. (2020). Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy. eLife 9, e52330. https://doi.org/10.7554/eLife.52330.

Leach, D.R., Krummel, M.F., and Allison, J.P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736.

Lin, J., Handschin, C., and Spiegelman, B.M. (2005). Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370.

Lin, J., Puigserver, P., Donovan, J., Tarr, P., and Spiegelman, B.M. (2002). Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC1beta ), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 277, 1645–1648.

Mahmoud, S.M., Paish, E.C., Powe, D.G., Macmillan, R.D., Grainge, M.J., Lee, A.H., Ellis, I.O., and Green, A.R. (2011). Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J. Clin. Oncol. 29, 1949–1955.

Malinee, M., Kumar, A., Hidaka, T., Horie, M., Hasegawa, K., Pandian, G.N., and Sugiyama, H. (2020). Targeted suppression of metastasis regulatory transcription factor SOX2 in various cancer cell lines using a sequence-specific designer pyrrole-imidazole polyamide. Bioorg. Med. Chem. 28, 115248.

Pandian, G.N., Sato, S., Anandhakumar, C., Taniguchi, J., Takashima, K., Syed, J., Han, L., Saha, A., Bando, T., Nagase, H., and Sugiyama, H. (2014a). Identification of a small molecule that turns ON the pluripotency gene circuitry in human fibroblasts. ACS Chem. Biol. 9, 2729–2736.

Pandian, G.N., Taniguchi, J., Junetha, S., Sato, S., Han, L., Saha, A., Anandhakumar, C., Bando, T., Nagase, H., Vaijayanthi, T., et al. (2014b). Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts. Sci. Rep. 4, 3843.

Patsoukis, N., Bardhan, K., Chatterjee, P., Sari, D., Liu, B., Bell, L.N., Karoly, E.D., Freeman, G.J., Petkova, V., Seth, P., et al. (2015). PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692.

Paumen, M.B., Ishida, Y., Han, H., Muramatsu, M., Eguchi, Y., Tsujimoto, Y., and Honjo, T. (1997). Direct interaction of the mitochondrial membrane protein carnitine palmitoyltransferase I with Bcl-2. Biochem. Biophys. Res. Commun. 231, 523–525.

Pearce, E.L. (2010). Metabolism in T cell activation and differentiation. Curr. Opin. Immunol. 22, 314–320.

Pearce, E.L., Walsh, M.C., Cejas, P.J., Harms, G.M., Shen, H., Wang, L.-S., Jones, R.G., and Choi, Y. (2009). Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107. 12 Cell Chemical Biology 29, 1–13, February 17, 2022

Please cite this article in press as: Malinee et al., Targeted epigenetic induction of mitochondrial biogenesis enhances antitumor immunity in mouse model, Cell Chemical Biology (2021), https://doi.org/10.1016/j.chembiol.2021.08.001

Perianayagam, M.C., Madias, N.E., Pereira, B.J., and Jaber, B.L. (2006). CREB transcription factor modulates Bcl2 transcription in response to C5a in HL-60- derived neutrophils. Eur. J. Clin. Invest. 36, 353–361.

Picca, A., and Lezza, A.M. (2015). Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: useful insights from aging and calorie restriction studies. Mitochondrion 25, 67–75.

Puigserver, P., Wu, Z., Park, C.W., Graves, R., Wright, M., and Spiegelman, B.M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839.

Refinetti, P., Warren, D., Morgenthaler, S., and Ekstrøm, P.O. (2017). Quantifying mitochondrial DNA copy number using robust regression to interpret real time PCR results. BMC Res. Notes 10, 593. Scharping, N.E., Menk, A.V., Moreci, R.S., Whetstone, R.D., Dadey, R.E., Watkins, S.C., Ferris, R.L., and Delgoffe, G.M. (2016). The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 701–703.

Schroder, K., Hertzog, P.J., Ravasi, T., and Hume, D.A. (2004). Interferongamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189.

Sena, L.A., Li, S., Jairaman, A., Prakriya, M., Ezponda, T., Hildeman, D.A., Wang, C.R., Schumacker, P.T., Licht, J.D., Perlman, H., et al. (2013). Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236.

Shao, S., Xu, Q., Yu, X., Pan, R., and Chen, Y. (2020). Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol. Ther. 209, 107503.

St-Pierre, J., Lin, J., Krauss, S., Tarr, P.T., Yang, R., Newgard, C.B., and Spiegelman, B.M. (2003). Bioenergetic analysis of peroxisome proliferatoractivated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J. Biol. Chem. 278, 26597–26603.

Synold, T.W., Xi, B., Wu, J., Yen, Y., Li, B.C., Yang, F., Phillips, J.W., Nickols, N.G., and Dervan, P.B. (2012). Single-dose pharmacokinetic and toxicity analysis of pyrrole-imidazole polyamides in mice. Cancer Chemother. Pharmacol. 70, 617–625.

Takahashi, T., Asami, Y., Kitamura, E., Suzuki, T., Wang, X., Igarashi, J., Morohashi, A., Shinojima, Y., Kanou, H., Saito, K., et al. (2008). Development of pyrrole-imidazole polyamide for specific regulation of human aurora kinase-A and -B gene expression. Chem. Biol. 15, 829–841.

Taniguchi, J., Feng, Y., Pandian, G.N., Hashiya, F., Hidaka, T., Hashiya, K., Park, S., Bando, T., Ito, S., and Sugiyama, H. (2018). Biomimetic artificial epigenetic code for targeted acetylation of histones. J. Am. Chem. Soc. 140, 7108–7115.

Topalian, S.L., Drake, C.G., and Pardoll, D.M. (2015). Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461.

Turner, B.M. (1991). Histone acetylation and control of gene expression. J. Cell Sci. 99, 13–20.

Vaijayanthi, T., Bando, T., Pandian, G.N., and Sugiyama, H. (2012). Progress and prospects of pyrrole-imidazole polyamide–fluorophore conjugates as sequence-selective DNA probes. ChemBioChem 13, 2170–2185.

van der Windt, G.J., Everts, B., Chang, C.H., Curtis, J.D., Freitas, T.C., Amiel, E., Pearce, E.J., and Pearce, E.L. (2012). Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78.

van der Windt, G.J., O’sullivan, D., Everts, B., Huang, S.C., Buck, M.D., Curtis, J.D., Chang, C.H., Smith, A.M., Ai, T., Faubert, B., et al. (2013). CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl. Acad. Sci. U S A 110, 14336–14341.

van der Windt, G.J., and Pearce, E.L. (2012). Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 249, 27–42.

Verdone, L., Agricola, E., Caserta, M., and Di Mauro, E. (2006). Histone acetylation in gene regulation. Brief. Funct. Genomics 5, 209–221.

Villena, J.A., and Kralli, A. (2008). ERRalpha: a metabolic function for the oldest orphan. Trends Endocrinol. Metab. 19, 269–276.

Wan, H., Xu, B., Zhu, N., and Ren, B. (2020). PGC-1a activator-induced fatty acid oxidation in tumor-infiltrating CTLs enhances effects of PD-1 blockade therapy in lung cancer. Tumori 106, 55–63.

Wang, Y., An, H., Liu, T., Qin, C., Sesaki, H., Guo, S., Radovick, S., Hussain, M., Maheshwari, A., Wondisford, F.E., et al. (2019). Metformin improves mitochondrial respiratory activity through activation of AMPK. Cell Rep. 29, 1511– 1523.e5.

Weinberg, S.E., Sena, L.A., and Chandel, N.S. (2015). Mitochondria in the regulation of innate and adaptive immunity. Immunity 42, 406–417.

Zhu, H., Bengsch, F., Svoronos, N., Rutkowski, M.R., Bitler, B.G., Allegrezza, M.J., Yokoyama, Y., Kossenkov, A.V., Bradner, J.E., Conejo-Garcia, J.R., and

Zhang, R. (2016). BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep. 16, 2829–2837.

Zou, W., Wolchok, J.D., and Chen, L. (2016). PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328rv4.

Zucconi, B.E., Luef, B., Xu, W., Henry, R.A., Nodelman, I.M., Bowman, G.D., Andrews, A.J., and Cole, P.A. (2016). Modulation of p300/CBP acetylation of nucleosomes by bromodomain ligand I-CBP112. Biochemistry 55, 3727–3734.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る