リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Activation energy of homogeneous nucleation of Zr hydride: Density functional theory calculation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Activation energy of homogeneous nucleation of Zr hydride: Density functional theory calculation

Ishii, Akio 大阪大学

2022.09.07

概要

Considering the nucleation process of Zr hydrides as phase transformation from hexagonal closed-packed (HCP) to face-centered tetragonal (FCT) structure, we calculated the activation energy of the homogeneous nucleation process of Zr hydrides and atomic rearrangement during nucleation for Zr4H, Zr2H, ZrH and ZrH2 using density functional theory calculations and minimum energy path detection. At 0 K limit, although ZrH and ZrH2 have lower chemical potentials and are more energetically stable than Zr4H and Zr2H, the latter have lower activation energies for nucleation. At finite temperatures, the crossover of activation energies occurs around 300 K, where ZrH becomes the most possible candidate with the lowest activation energy. This was explained by the difference in the atomic rearrangement and change in phonon frequency during phase transformation.

参考文献

[1] A.T. Motta, L. Capolungo, L.Q. Chen, M.N. Cinbiz, M.R. Daymond, D.A. Koss, E. Lacroix, G. Pastore, P.C.A. Simon, M.R. Tonks, B.D. Wirth, M.A. Zikry, J. Nucl. Mater. 518 (2019) 440–460.

[2] A.A. Plyasov, V.V. Novikov, Y.N. Devyatko, Phys. Atomic Nucl. 83 (2020) 1407–1424.

[3] D.O. Northwoodkosasih, Int. Met. Rev. 28 (1983) 92–121.

[4] C.E. Ells, J. Nucl. Mater. 28 (1968) 129–151.

[5] J. Bair, M. Asle Zaeem, M. Tonks, J. Nucl. Mater. 466 (2015) 12–20.

[6] G.J. Carpenter, J.F. Watters, J. Nucl. Mater. 73 (1978) 190–197.

[7] S.M. Liu, A. Ishii, S.B. Mi, S. Ogata, J. Li, W.Z. Han, Small 18 (2022) 2105881.

[8] M. Christensen, W. Wolf, C. Freeman, E. Wimmer, R.B. Adamson, L. Hallstadius, P.E. Cantonwine, E.V. Mader, J. Phys. Condens. Matter. 27 (2015) 025402.

[9] Z. Zhao, J.P. Morniroli, A. Legris, A. Ambard, Y. Khin, L. Legras, M. Blat-Yrieix, J. Micro. 232 (2008) 410–421.

[10] Y. Zhang, X.M. Bai, J. Yu, M.R. Tonks, M.J. Noordhoek, S.R. Phillpot, Acta Mater. 111 (2016) 357–365.

[11] H. Jonsson, G. Mills, K.W. Jacobsen, in: B.j. berne, g. ciccotti, d.f. coker (Eds.), Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific, Singapore, 1998.

[12] P. Olsson, A. Massih, J. Blomqvist, A.-M. Alvarez Holston, C. Bjerkén, Comput. Mater. Sci. 86 (2014) 211–222.

[13] Y. Zhang, C. Jiang, X. Bai, Sci. Rep. 7 (2017) 41033.

[14] X. Zhu, D.Y. Lin, J. Fang, X.Y. Gao, Y.F. Zhao, H.F. Song, Comput. Mater. Sci. 150 (2018) 77–85.

[15] C.M. Andolina, W.A. Saidi, H.P. Paudel, D.J. Senor, Y. Duan, Comput. Mater. Sci. 209 (2022) 111384.

[16] I.C. Njifon, E. Torres, Acta Mater. 202 (2021) 222–231.

[17] G. Han, Y. Zhao, C. Zhou, D.-Y. Lin, X. Zhu, J. Zhang, S. Hu, H. Song, Acta Mater. 165 (2019) 528–546.

[18] A. Ishii, Comput. Mater. Sci. 211 (2022) 111500.

[19] C. Domain, R. Besson, A. Legris, Acta Mater. 50 (2002) 3513–3526.

[20] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169–11186.

[21] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 11–19.

[22] J. Perdew, J. Chevary, S. Vosko, Phys. Rev. B 46 (1992) 6671–6687.

[23] J. Li, Modell. Simul. Mater. Sci. Eng. 11 (2003) 173–177.

[24] A. Togo, I. Tanaka, Scr. Mater. 108 (2015) 1–5.

[25] C.P. Flynn, Point Defects and Diffusion, Clarendon Press, 1972.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る