リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy

Xie, Weibin Xu, Jiasheng Idros, Md Ubaidah Katsuhira, Jouji Fuki, Masaaki Hayashi, Masahiko Yamanaka, Masahiro Kobori, Yasuhiro Matsubara, Ryosuke 神戸大学

2023.03.23

概要

Increasing levels of CO₂ in the atmosphere is a problem that must be urgently resolved if the rise in current global temperatures is to be slowed. Chemically reducing CO₂ into compounds that are useful as energy sources and carbon-based materials could be helpful in this regard. However, for the CO₂ reduction reaction (CO₂RR) to be operational on a global scale, the catalyst system must: use only renewable energy, be built from abundantly available elements and not require high-energy reactants. Although light is an attractive renewable energy source, most existing CO₂RR methods use electricity and many of the catalysts used are based on rare heavy metals. Here we present a transition-metal-free catalyst system that uses an organohydride catalyst based on benzimidazoline for the CO₂RR that can be regenerated using a carbazole photosensitizer and visible light. The system is capable of producing formate with a turnover number exceeding 8,000 and generates no other reduced products (such as H₂ and CO).

この論文で使われている画像

参考文献

1.

White, J. L. et al. Light-driven heterogeneous reduction of carbon dioxide:

Photocatalysts and photoelectrodes. Chem. Rev. 115, 12888-12935 (2015).

2.

MacDowell, N. et al. An overview of CO2 capture technologies. Energy Environ.

Sci. 3, 1645-1669 (2010).

3.

Aresta, M., Dibenedetto, A. & Angelini, A. Catalysis for the valorization of

exhaust carbon: From CO2 to chemicals, materials, and fuels. Technological use

of CO2. Chem. Rev. 114, 1709-1742 (2014).

4.

Ra, E. C. et al. Recycling carbon dioxide through catalytic hydrogenation:

Recent key developments and perspectives. ACS Catal. 10, 11318-11345 (2020).

5.

Qiao, J., Liu, Y., Hong, F. & Zhang, J. A review of catalysts for the

electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev.

43, 631-675 (2014).

6.

Takeda, H., Cometto, C., Ishitani, O. & Robert, M. Electrons, photons, protons

and earth-abundant metal complexes for molecular catalysis of CO2 reduction.

ACS Catal. 7, 70-88 (2017).

7.

Seyferth, D. The grignard reagents. Organometallics 28, 1598-1605 (2009).

8.

Seo, H., Liu, A. & Jamison, T. F. Direct β-selective hydrocarboxylation of

styrenes with CO2 enabled by continuous flow photoredox catalysis. J. Am.

Chem. Soc. 139, 13969-13972 (2017).

9.

Seo, H., Katcher, M. H. & Jamison, T. F. Photoredox activation of carbon

dioxide for amino acid synthesis in continuous flow. Nat. Chem. 9, 453-456

(2017).

10.

Matsuoka, S., Kohzuki, T., Pac, C. & Yanagida, S. Photochemical reduction of

carbon dioxide to formate catalyzed by p-terphenyl in aprotic polar solvent.

Chem. Lett. 19, 2047-2048 (1990).

11.

Sun, Z. et al. Catalysis of carbon dioxide photoreduction on nanosheets:

Fundamentals and challenges. Angew. Chem. Int. Ed. 57, 7610-7627 (2018).

12.

Matsuoka, S., Yamamoto, K., Pac, C. & Yanagida, S. Enhanced p-terphenylcatalyzed photoreduction of CO2 to CO through the mediation of Co(III)–

cyclam complex. Chem. Lett. 20, 2099-2100 (1991).

13.

Zhang, X., Cibian, M., Call, A., Yamauchi, K. & Sakai, K. Photochemical CO2

reduction driven by water-soluble copper(I) photosensitizer with the catalysis

accelerated by multi-electron chargeable cobalt porphyrin. ACS Catal. 9, 1126311273 (2019).

14.

Tamaki, Y., Morimoto, T., Koike, K. & Ishitani, O. Photocatalytic CO2 reduction

with high turnover frequency and selectivity of formic acid formation using

11

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Ru(II) multinuclear complexes. Proc. Natl Acad. Sci. USA 109, 15673-15678

(2012).

Lee, S. E. et al. Visible-light photocatalytic conversion of carbon dioxide by

Ni(II) complexes with N4S2 coordination: Highly efficient and selective

production of formate. J. Am. Chem. Soc. 142, 19142-19149 (2020).

Liu, X., Inagaki, S. & Gong, J. Heterogeneous molecular systems for

photocatalytic CO2 reduction with water oxidation. Angew. Chem. Int. Ed. 55,

14924-14950 (2016).

Su, B., Cao, Z.-C. & Shi, Z.-J. Exploration of earth-abundant transition metals

(Fe, Co, and Ni) as catalysts in unreactive chemical bond activations. Acc. Chem.

Res. 48, 886-896 (2015).

Wang, D. & Astruc, D. The recent development of efficient earth-abundant

transition-metal nanocatalysts. Chem. Soc. Rev. 46, 816-854 (2017).

Schneider, J., Jia, H., Muckerman, J. T. & Fujita, E. Thermodynamics and

kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction

catalysts. Chem. Soc. Rev. 41, 2036-2051 (2012).

Behnke, S. L., Manesis, A. C. & Shafaat, H. S. Spectroelectrochemical

investigations of nickel cyclam indicate different reaction mechanisms for

electrocatalytic CO2 and H+ reduction. Dalton Trans. 47, 15206-15216 (2018).

Elgrishi, N., Chambers, M. B. & Fontecave, M. Turning it off! Disfavouring

hydrogen evolution to enhance selectivity for CO production during

homogeneous CO2 reduction by cobalt–terpyridine complexes. Chem. Sci. 6,

2522-2531 (2015).

Ooka, H., Figueiredo, M. C. & Koper, M. T. M. Competition between hydrogen

evolution and carbon dioxide reduction on copper electrodes in mildly acidic

media. Langmuir 33, 9307-9313 (2017).

An, P. et al. Enhancing CO2 reduction by suppressing hydrogen evolution with

polytetrafluoroethylene protected copper nanoneedles. J. Mater. Chem. A 8,

15936-15941 (2020).

Tsujiguchi, T. et al. Acceleration of electrochemical CO2 reduction to formate

at the Sn/reduced graphene oxide interface. ACS Catal. 11, 3310-3318 (2021).

Hietala, J. et al. in Ullmann's encyclopedia of industrial chemistry 7th edn (eds

Bellussi, G. et al.) (2016); https://doi.org/10.1002/14356007.a12_013.pub3.

Yang, J. Y., Kerr, T. A., Wang, X. S. & Barlow, J. M. Reducing CO2 to HCO2–

at mild potentials: Lessons from formate dehydrogenase. J. Am. Chem. Soc. 142,

19438-19445 (2020).

Lorenzo, B. F. & O'Kiely, P. Alternatives to formic acid as a grass silage additive

under two contrasting ensilability conditions. Irish. J. Agr. Food Res. 47, 135149 (2008).

Bahuguna, A. & Sasson, Y. Formate-bicarbonate cycle as a vehicle for hydrogen

and energy storage. ChemSusChem 14, 1258-1283 (2021).

Enthaler, S. Carbon dioxide—the hydrogen-storage material of the future?

ChemSusChem 1, 801-804 (2008).

Joó, F. Breakthroughs in hydrogen storage—formic acid as a sustainable storage

12

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

material for hydrogen. ChemSusChem 1, 805-808 (2008).

Boston, D. J., Xu, C., Armstrong, D. W. & MacDonnell, F. M. Photochemical

reduction of carbon dioxide to methanol and formate in a homogeneous system

with pyridinium catalysts. J. Am. Chem. Soc. 135, 16252-16255 (2013).

Tamaki, Y., Koike, K. & Ishitani, O. Highly efficient, selective, and durable

photocatalytic system for CO2 reduction to formic acid. Chem. Sci. 6, 72137221 (2015).

P, S. & Mandal, S. K. From CO2 activation to catalytic reduction: A metal-free

approach. Chem. Sci. 11, 10571-10593 (2020)

Oh, Y. & Hu, X. Organic molecules as mediators and catalysts for photocatalytic

and electrocatalytic CO2 reduction. Chem. Soc. Rev. 42, 2253-2261 (2013).

Lim, C.-H., Holder, A. M., Hynes, J. T. & Musgrave, C. B. Catalytic reduction

of CO2 by renewable organohydrides. J. Phys. Chem. Lett. 6, 5078-5092 (2015).

Keith, J. A. & Carter, E. A. Theoretical insights into electrochemical CO2

reduction mechanisms catalyzed by surface-bound nitrogen heterocycles. J.

Phys. Chem. Lett. 4, 4058-4063 (2013).

Alherz, A. et al. Renewable hydride donors for the catalytic reduction of CO2:

A thermodynamic and kinetic study. J. Phys. Chem. B 122, 10179-10189 (2018).

Wen, F. et al. Amide-bridged conjugated organic polymers: Efficient metal-free

catalysts for visible-light-driven CO2 reduction with H2O to CO. Chem. Sci. 12,

11548-11553 (2021).

Wang, Y., Godin, R., Durrant, J. R. & Tang, J. Efficient hole trapping in carbon

dot/oxygen-modified carbon nitride heterojunction photocatalysts for enhanced

methanol production from CO2 under neutral conditions. Angew. Chem. Int. Ed.

60, 20811-20816 (2021).

Mazzanti, S. et al. All-organic Z-scheme photoreduction of CO2 with water as

the donor of electrons and protons. Appl. Catal. B: Environ. 285, 119773 (2021).

Courtemanche, M.-A., Légaré, M.-A., Maron, L. & Fontaine, F.-G. A highly

active phosphine–borane organocatalyst for the reduction of CO2 to methanol

using hydroboranes. J. Am. Chem. Soc. 135, 9326-9329 (2013).

Lim, C.-H. et al. Benzimidazoles as metal-free and recyclable hydrides for CO2

reduction to formate. J. Am. Chem. Soc. 141, 272-280 (2019).

Rueping, M., Dufour, J. & Schoepke, F. R. Advances in catalytic metal-free

reductions: From bio-inspired concepts to applications in the organocatalytic

synthesis of pharmaceuticals and natural products. Green Chem. 13, 1084-1105

(2011).

Lu, L.-Q., Li, Y., Junge, K. & Beller, M. Iron-catalyzed hydrogenation for the

in situ regeneration of an NAD(P)H model: Biomimetic reduction of α-keto-/αiminoesters. Angew. Chem. Int. Ed. 52, 8382-8386 (2013).

Chen, Q.-A. et al. Dihydrophenanthridine: A new and easily regenerable

NAD(P)H model for biomimetic asymmetric hydrogenation. J. Am. Chem. Soc.

134, 2442-2448 (2012).

Chen, Q.-A. et al. Biomimetic asymmetric hydrogenation: In situ regenerable

hantzsch esters for asymmetric hydrogenation of benzoxazinones. J. Am. Chem.

13

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Soc. 133, 16432-16435 (2011).

Paul, C. E., Arends, I. W. C. E. & Hollmann, F. Is simpler better? Synthetic

nicotinamide cofactor analogues for redox chemistry. ACS Catal. 4, 788-797

(2014).

Wu, H. et al. Methods for the regeneration of nicotinamide coenzymes. Green

Chem. 15, 1773-1789 (2013).

Ohtsu, H. & Tanaka, K. An organic hydride transfer reaction of a ruthenium

NAD model complex leading to carbon dioxide reduction. Angew. Chem. Int.

Ed. 51, 9792-9795 (2012).

Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing

non-natural reactivity by irradiating nicotinamide-dependent enzymes with

light. Nature 540, 414-417 (2016).

Wang, J., Zhu, Z.-H., Chen, M.-W., Chen, Q.-A. & Zhou, Y.-G. Catalytic

biomimetic asymmetric reduction of alkenes and imines enabled by chiral and

regenerable NAD(P)H models. Angew. Chem. Int. Ed. 58, 1813-1817 (2019).

Ohtsu, H. & Tanaka, K. Drastic difference in the photo-driven hydrogenation

reactions of ruthenium complexes containing nad model ligands. Chem.

Commun. 48, 1796-1798 (2012).

Ma, B. et al. Efficient visible-light-driven CO2 reduction by a cobalt molecular

catalyst covalently linked to mesoporous carbon nitride. J. Am. Chem. Soc. 142,

6188-6195 (2020).

Shon, J.-H. et al. Photoredox catalysis on unactivated substrates with strongly

reducing iridium photosensitizers. Chem. Sci. 12, 4069-4078 (2021).

Hong, D., Tsukakoshi, Y., Kotani, H., Ishizuka, T. & Kojima, T. Visible-lightdriven photocatalytic CO2 reduction by a Ni(II) complex bearing a bioinspired

tetradentate ligand for selective CO production. J. Am. Chem. Soc. 139, 65386541 (2017).

Kamada, K. et al. Photocatalytic CO2 reduction using a robust multifunctional

iridium complex toward the selective formation of formic acid. J. Am. Chem.

Soc. 142, 10261-10266 (2020).

Hasegawa, E. et al. Photoinduced electron transfer reactions of α,β-epoxy

ketones with 2-phenyl-N,N-dimethylbenzimidazoline (PDBMI): Significant

water effect on the reaction pathway. Tetrahedron Lett. 37, 7079-7082 (1996).

Ilic, S., Alherz, A., Musgrave, C. B. & Glusac, K. D. Importance of protoncoupled electron transfer in cathodic regeneration of organic hydrides. Chem.

Commun. 55, 5583-5586 (2019).

Hasegawa, E. et al. Photoinduced electron-transfer systems consisting of

electron-donating pyrenes or anthracenes and benzimidazolines for reductive

transformation of carbonyl compounds. Tetrahedron 62, 6581-6588 (2006).

Matsubara, R. et al. UVA- and visible-light-mediated generation of carbon

radicals from organochlorides using nonmetal photocatalyst. J. Org. Chem. 83,

9381-9390 (2018).

Yabuta, T., Hayashi, M. & Matsubara, R. Photocatalytic reductive C–O bond

cleavage of alkyl aryl ethers by using carbazole catalysts with cesium carbonate.

14

62.

63.

64.

65.

66.

67.

68.

J. Org. Chem. 86, 2545-2555 (2021).

Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. Retracted article: Reduction

of carbon dioxide to oxalate by a binuclear copper complex. Nat. Commun. 5,

5883 (2014).

Khamespanah, F. et al. Oxalate production via oxidation of ascorbate rather than

reduction of carbon dioxide. Nat. Commun. 12, 1997 (2021).

Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. Retraction note: Reduction

of carbon dioxide to oxalate by a binuclear copper complex. Nat. Commun. 12,

1996 (2021).

Connelly, N. G. & Geiger, W. E. Chemical redox agents for organometallic

chemistry. Chem. Rev. 96, 877-910 (1996).

Zhu, X.-Q., Mu, Y.-Y. & Li, X.-T. What are the differences between ascorbic

acid and NADH as hydride and electron sources in vivo on thermodynamics,

kinetics, and mechanism? J. Phys. Chem. B 115, 14794-14811 (2011).

Weerasooriya, R. B. et al. Kinetics of hydride transfer from catalytic metal-free

hydride donors to CO2. J. Phys. Chem. Lett. 12, 2306-2311 (2021).

Macartney, D. H. & Sutin, N. The oxidation of ascorbic acid by tris(2,2'bipyridine) complexes of osmium(III), ruthenium(III) and nickel(III) in aqueous

media: Applications of the marcus cross-relation. Inorg. Chim. Acta 74, 221228 (1983).

Methods

A general method for photocatalytic CO2RR (entry 1 in Supplementary Table 4 as a

representative example) was followed: A flame-dried 50-mL Schlenk tube with a Teflon

cap and a magnetic stir bar was charged with BI+(I-) (7.2 mg, 0.025 mmol, 2.5 mM),

PS 1 (3.8 mg, 0.015 mmol, 1.5 mM), ascorbic acid (88.1 mg, 0.500 mmol, 50 mM), and

K2CO3 (76.0 mg, 0.550 mmol, 55 mM). CH3CN (8 mL) and distilled water (2 mL) were

then introduced into the mixture, and the reaction mixture was degassed by three

freeze–pump–thaw cycles. Subsequently, the reaction mixture was backfilled with CO2

(>99.995% purity), and the CO2 atmosphere was maintained using a balloon. The

reaction mixture was stirred under visible-light irradiation (λmax = 400 nm) for 4 h. After

the reaction, 1,3,5-trimethyoxybenzene (40.6 mg) as an internal standard and distilled

water (4 mL) were added to the resulting reaction mixture. Finally, 0.6 mL of the

solution was transferred to an NMR tube and subjected to 1H NMR spectroscopic

analysis using the solvent suppression technique. The yield of formate was 72 mM.

Data Availability

The additional discussions and the data supporting the plots within this paper and other

findings of this study, such as 1H NMR and 13C NMR spectra, cyclic voltammograms,

optical spectra, experimental procedures, and quantum chemical calculations, are

available in the Supplementary Information.

Information of the corresponding authors

Masahiro Yamanaka

15

myamanak@rikkyo.ac.jp

Yasuhiro Kobori

ykobori@kitty.kobe-u.ac.jp

Ryosuke Matsubara

matsubara.ryouske@people.kobe-u.ac.jp

16

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る