リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Long-term evolution of a merger-remnant neutron star in general relativistic magnetohydrodynamics: Effect of magnetic winding」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Long-term evolution of a merger-remnant neutron star in general relativistic magnetohydrodynamics: Effect of magnetic winding

Shibata, Masaru Fujibayashi, Sho Sekiguchi, Yuichiro 京都大学 DOI:10.1103/PhysRevD.103.043022

2021.02

概要

Long-term ideal and resistive magnetohydrodynamics (MHD) simulations in full general relativity are performed for a massive neutron star formed as a remnant of binary neutron star mergers. Neutrino radiation transport effects are taken into account as in our previous papers. The simulation is performed in axial symmetry and without considering dynamo effects as a first step. In the ideal MHD, the differential rotation of the remnant neutron star amplifies the magnetic-field strength by the winding in the presence of a seed poloidal field until the electromagnetic energy reaches ∼ 10% of the rotational kinetic energy, E[kin], of the neutron star. The timescale until the maximum electromagnetic energy is reached depends on the initial magnetic-field strength and it is ∼ 1 s for the case that the initial maximum magnetic-field strength is ∼ 10¹⁵ G. After a significant amplification of the magnetic-field strength by the winding, the magnetic braking enforces the initially differentially rotating state approximately to a rigidly rotating state. In the presence of the resistivity, the amplification is continued only for the resistive timescale, and if the maximum electromagnetic energy reached is smaller than ∼ 3% of E[kin], the initial differential rotation state is approximately preserved. In the present context, the post-merger mass ejection is induced primarily by the neutrino irradiation/heating and the magnetic winding effect plays only a minor role for the mass ejection.

この論文で使われている画像

参考文献

1. M. Shibata and K. Hotokezaka, Annu. Rev. Nucl. Part. Sci.69, 41(2019).

2. B.P. Abbott et か.,Phys. Rev. Lett. 119, 161101(2017).

3. LIGO Scientic and Virgo Collaborations, Astrophys. J. 848, L12 (2017).

4. B. D. Metzger and E. Berger, Astrophys. J. 746, 48 (2012).

5. K. Hotokezaka and T. Piran, Mon. Not. R. Astron. Soc. 450, 1430 (2015).

6. S. A. Balbus and J. F. Hawley, Rev. Mod. Phys. 70,1(1998).

7. R. Fernandez and B. D. Metzger, Mon. Not. R. Astron. Soc. 435, 502 (2013).

8. B. D. Metzger and R. Ferndndez, Mon. Not. R. Astron. Soc. 441, 3444 (2014).

9. O. Just, A. Bauswein, R. A. Pulpillo, S. Goriely, and H.-Th. Janka, Mon. Not. R. Astron. Soc. 448, 541(2015).

10. D. M. Siegel and B. D. Metzger, Phys. Rev. Lett. 119, 231102 (2017); Astrophys. J. 858, 52 (2018).

11. S. Fujibayashi, K. Kiuchi, N. Nishimura, Y. Sekiguchi, and M. Shibata, Astrophys. J. 860, 64 (2018).

12. R. Fernandez, A. Tchekhovskoy, E. Quataert, F. Foucart, and D. Kasen, Mon. Not. R. Astron. Soc. 482, 3373 (2019).

13. A. Janiuk, Astrophys. J. 882,163 (2019).

14. I. M. Christie, A. Lalakos, A. Tchekhovskoy, R. Fernandez, F. Foucart, E. Quataert, and D. Kasen, Mon. Not. R. Astron. Soc. 490, 4811(2019).

15. J.M. Miller, B. R. Ryan, J. C. Dolence, A. Burrows, C. J. Fontes, C. L. Fryer, O. Korobkin, J. Lippuner, M. R. Mumpower, and R. T. Wollaeger, Phys. Rev. D 100, 023008 (2019).

16. S. Fujibayashi, M. Shibata, S. Wanajo, K. Kiuchi, K. Kyutoku, and Y. Sekiguchi, Phys. Rev. D 101,083029 (2020).

17. S. Fujibayashi, S. Wanajo, K. Kiuchi, K. Kyutoku, Y. Sekiguchi, and M. Shibata, Astrophys. J. 901,122 (2020).

18. R. Fernandez, F. Foucart, and J. Lippuner, Mon. Not. R. Astron. Soc. 497, 3221(2020).

19. P. Mdsta, D. Radice, R. Haas, E. Schnetter, and S. Bernuzzi, Astrophys. J. 901,L37 (2020).

20. M. Shibata, K. Taniguchi, and K. Uryu, Phys. Rev. D 71, 084021(2005).

21. S.L. Shapiro, Astrophys. J. 544, 397 (2000).

22. M. Shibata, Y.-T. Liu, S. L. Shapiro, and B. C. Stephens, Phys. Rev. D 74,104026 (2006).

23. L. Sun, M. Ruiz, and S. L. Shapiro, Phys. Rev. D 99,064057 (2019).

24. K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, and T. Wada, Phys. Rev. D 90, 041502 (2014); K. Kiuchi, P. Cerda-Duran, K. Kyutoku, Y. Sekiguchi, and M. Shibata, Phys. Rev. D 92,124034 (2015); K. Kiuchi, K. Kyutoku, Y. Sekiguchi, and M. Shibata, Phys. Rev. D 97,124039 (2018).

25. S. Fujibayashi, Y. Sekiguchi, K. Kiuchi, and M. Shibata, Astrophys. J. 846,114 (2017).

26. T. G. Cowling, Mon. Not. R. Astron. Soc. 94, 39 (1933).

27. M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995): T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59, 024007 (1998).

28. M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower, Phys. Rev. Lett. 96,111101(2006): J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van Meter, Phys. Rev. Lett. 96,111102 (2006).

29. D. Hilditch, S. Bemuzzi, M. Thierfelder, Z. Cao, W. Tichy, and B. Brugmann, Phys. Rev. D 88, 084057 (2013).

30. M. Alcubierre, B. Brugmann, D. Holz, R. Takahashi, S. Brandt, E. Seidel, and J. Thornburg, Int. J. Mod. Phys. D 10, 273 (2001).

31. M. Shibata, Prog. Theor. Phys. 104, 325 (2000); Phys. Rev. D 67 (2003), 024033; M. Shibata and Y. Sekiguchi, Prog. Theor. Phys. 127, 535 (2012).

32. S. Banik, M. Hempel, and D. Bandyophadyay, Astrophys. J. Suppl. Ser. 214, 22 (2014).

33. F. X. Timmes and F. D. Swesty, Astrophys. J. Suppl. Ser. 126, 501(2000).

34. M. Shibata, Numerical Relativity (World Scientific, Singapore, 2016).

35. A. Brandenburg and K. Subramanian, Phys. Rep. 417,1 (2005).

36. N. Bucciantini and L. Del Zanna, Mon. Not. R. Astron. Soc. 428, 71(2013).

37. M. Shibata and Y. Sekiguchi, Phys. Rev. D 72, 044014 (2005).

38. C. R. Evans and J. F. Hawley, Astrophys. J. 332,659 (1988).

39. D. Duez, Y.-T. Liu, S. L. Shapiro, M. Shibata, and B. C. Stephens, Phys. Rev. Lett. 96, 031101(2006).

40. M. Shibata, M. D. Duez, Y.-T. Liu, S. L. Shapiro, and B. C. Stephens, Phys. Rev. Lett. 96, 031102 (2006).

41. M. D. Duez, Y.-T. Liu, S. L. Shapiro, M. Shibata, and B. C. Stephens, Phys. Rev. D 73,104015 (2006).

42. E. N. Parker, Astrophys. J. 121,49 (1955).

43. R. J. Tayler, Mon. Not. R. Astron. Soc. 161,365 (1973).

44. K. Kiuchi, S. Yoshida, and M. Shibata, Astron. Astrophys. 532, A30 (2011).

45. V. Duez, J. Braithwaite, and S. Mathis, Astrophys. J. 724, L34 (2010).

46. S. S. Komissarov, Mon. Not. R. Astron. Soc. 382, 995 (2007).

47. M. Dumbser and O. Zanolti, J. Comput. Phys. 228, 6991 (2009).

48. C. Palenzuela, L. Lehner, O. Reula, and L. Rezzolla, Mon. Not. R. Astron. Soc. 394, 1727 (2009).

49. Q. Qian, C. Fendt, S. Noble, and M. Bugli, Astrophys. J. 834, 29 (2017).

参考文献をもっと見る