リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Axion cloud evaporation during inspiral of black hole binaries: The effects of backreaction and radiation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Axion cloud evaporation during inspiral of black hole binaries: The effects of backreaction and radiation

Takahashi, Takuya Omiya, Hidetoshi Tanaka, Takahiro 京都大学 DOI:10.1093/ptep/ptac044

2022.04

概要

Ultralight scalar fields such as axions can form clouds around rotating black holes (BHs) by the superradiant instability. It is important to consider the evolution of clouds associated with BH binaries for the detectability of the presence of clouds through gravitational wave signals and observations of the mass and spin parameters of BHs. The impact on the axion cloud due to the tidal perturbation from the companion in a binary system was first studied in D. Baumann et al., Phys. Rev. D, 101, 083019. Here, we re-examine this issue taking into account the following points. First, we study the influence of higher-multipole moments. Second, we consider the backreaction due to the angular momentum transfer between the cloud and the orbital motion. This angular momentum transfer further causes the backreaction to the hyperfine split through the change in geometry. Finally, we calculate the particle number flux to infinity induced by the tidal interaction. As a result, we find that the scalar field is not reabsorbed by the BH. Instead, the scalar particles are radiated away to evaporate during the inspiral, irrespective of the direction of the orbital motion, for almost equal mass binaries.

この論文で使われている画像

参考文献

[1] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell, Phys. Rev. D 81,

123530 (2010).

[2] P. Svrcek and E. Witten, J. High Energy Phys. 06, 051 (2006).

[3] M. Dine and W. Fischler, Phys. Lett. B 120, 137 (1983).

[4] J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. B 120, 127 (1983).

[5] L. F. Abbott and P. Sikivie, Phys. Lett. B 120, 133 (1983).

[6] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys. Rev. D 95, 043541 (2017).

[7] R. Brito, V. Cardoso, and P. Pani, Superradiance: New Frontiers in Black Hole Physics, Lecture

Notes in Physics Vol. 971, (2020), 10.1007/978-3-030-46622-0.

[8] S. L. Detweiler, Phys. Rev. D 22, 2323 (1980).

[9] S. R. Dolan, Phys. Rev. D 76, 084001 (2007).

18/19

Downloaded from https://academic.oup.com/ptep/article/2022/4/043E01/6547024 by Kyoto University user on 04 January 2023

where  is the Laplacian in flat space and Tti is the t–i component of the energy–momentum

tensor. Here, we write xi = (x, y, z). Solving Eq. (B.3), we have

−1

∂xi

d 3 x

Tti .

δgtϕ = −16π

(B4)

∂ϕ

4π |x − x |

On the other hand, the t–ϕ component of the energy–momentum tensor is

2ωm

|ψnlm (x)|2 ,

(B5)

Ttϕ = −

and we can evaluate the angular momentum of the axion cloud as ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る