リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Study of I-ball/Oscillon Decay Processes and its Application」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Study of I-ball/Oscillon Decay Processes and its Application

中野, 湧天 東京大学 DOI:10.15083/0002004698

2022.06.22

概要

この博士論文ではI-ball/oscillonの崩壊過程の研究と、axion-likeparticleを仮定した場合のI-ball/oscillon形成可能性と寿命についての研究を行う。

I-ball/oscillonは実スカラー場が空間的に局在化している解で、そのスカラー場の質量に比べて長寿命であることが知られている。I-ball/oscillonはcoherent oscillationをしており、adiabatic invarianceによって安定な最小エネルギー解である。I-ball/oscillonはインフレーション理論やアクシオン理論でも生成されることがわかっている。

I-ball/oscillonの崩壊過程についてはこれまでよくわかっていなかった。この博士論文ではclassical field theoryを用いてI-ball/oscillonの崩壊率の解析的な表式を求める。この方法では、I-ball/oscillonをバックグラウンドとして摂動論を展開し、相対論的な運動方程式を解くことによって崩壊率を求める。この方法で求めた結果はclassical lattice simulationの結果と無矛盾であることが確かめられる。

またこの博士論文では、adiabatic invarianceが厳密に保存するような系での安定性も調べる。このexactI-ball/oscillonは上記の方法では崩壊しないが、この系にfluctuationを付与するとinstability bandによってfluctuationが成長し崩壊することを理論計算から求める。この予想が正しいことが同様にclassical lattice simulationによって確かめられる。

I-ball/oscillonの崩壊過程が判明したので、これをaxion-like particleに応用する。ultra-light axion-like particleは銀河ハローのcore-cusp問題を解決できる暗黒物質模型の一つである。このultra-light axion-like particleに対してI-ball/oscillon形成率と寿命の計算を行い、ポテンシャルとI-ball/oscillonの形成率の関係を調べる。

参考文献

[1] K. G. Begeman, A. H. Broeils and R. H. Sanders, Extended rotation curves of spiral galaxies: dark haloes and modified dynamics, Monthly Notices of the Royal Astronomical Society 249 (04, 1991) 523–537, [https://academic.oup.com/mnras/article-pdf/249/3/523/18160929/mnras249- 0523.pdf].

[2] Planck collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, 1807.06209.

[3] G. ’t Hooft, Symmetry breaking through bell-jackiw anomalies, Phys. Rev. Lett. 37 (Jul, 1976) 8–11.

[4] R. D. Peccei and H. R. Quinn, Constraints imposed by CP conservation in the presence of pseudoparticles, Phys. Rev. D 16 (Sep, 1977) 1791–1797.

[5] R. D. Peccei and H. R. Quinn, CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38 (Jun, 1977) 1440–1443.

[6] S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (Jan, 1978) 223–226.

[7] F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett. 40 (Jan, 1978) 279–282.

[8] J. E. Kim, Weak-interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (Jul, 1979) 103–107.

[9] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B166 (1980) 493–506.

[10] M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. 104B (1981) 199–202.

[11] A. H. Guth, Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 23 (Jan, 1981) 347–356.

[12] A. Linde, A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Physics Letters B 108 (1982) 389 – 393.

[13] A. Albrecht and P. J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (Apr, 1982) 1220–1223.

[14] K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467–479.

[15] I. L. Bogolyubsky and V. G. Makhankov, Lifetime of Pulsating Solitons in Some Classical Models, Pisma Zh. Eksp. Teor. Fiz. 24 (1976) 15–18.

[16] M. Gleiser, Pseudostable bubbles, Phys. Rev. D49 (1994) 2978–2981, [hep-ph/9308279].

[17] E. J. Copeland, M. Gleiser and H. R. Muller, Oscillons: Resonant configurations during bubble collapse, Phys. Rev. D52 (1995) 1920–1933, [hep-ph/9503217].

[18] M. Ibe, M. Kawasaki, W. Nakano and E. Sonomoto, Decay of I-ball/Oscillon in Classical Field Theory, JHEP 04 (2019) 030, [1901.06130].

[19] M. Ibe, M. Kawasaki, W. Nakano and E. Sonomoto, Fragileness of Exact I-ball/Oscillon, Phys. Rev. D100 (2020) 125021, [1908.11103].

[20] M. Kawasaki, W. Nakano and E. Sonomoto, Oscillon of Ultra-Light Axion-like Particle, 1909.10805.

[21] J. McDonald, Inflaton condensate fragmentation in hybrid inflation models, Phys. Rev. D66 (2002) 043525, [hep-ph/0105235].

[22] M. A. Amin, R. Easther, H. Finkel, R. Flauger and M. P. Hertzberg, Oscillons After Inflation, Phys. Rev. Lett. 108 (2012) 241302, [1106.3335].

[23] M. Kawasaki, F. Takahashi and N. Takeda, Adiabatic Invariance of Oscillons/I-balls, Phys. Rev. D92 (2015) 105024, [1508.01028].

[24] P. Salmi and M. Hindmarsh, Radiation and Relaxation of Oscillons, Phys. Rev. D85 (2012) 085033, [1201.1934].

[25] K. Mukaida, M. Takimoto and M. Yamada, On Longevity of I-ball/Oscillon, JHEP 03 (2017) 122, [1612.07750].

[26] J. Oll´e, O. Pujol`as and F. Rompineve, Oscillons and Dark Matter, 1906.06352.

[27] S.-Y. Zhou, E. J. Copeland, R. Easther, H. Finkel, Z.-G. Mou and P. M. San, Gravitational Waves from Oscillon Preheating, JHEP 10 (2013) 026, [1304.6094].

[28] S. Antusch, F. Cefala and S. Orani, Gravitational waves from oscillons after inflation, Phys. Rev. Lett. 118 (2017) 011303, [1607.01314].

[29] S. Kasuya, M. Kawasaki and F. Takahashi, I-balls, Phys. Lett. B559 (2003) 99–106, [hep-ph/0209358].

[30] K. Mukaida and M. Takimoto, Correspondence of I- and Q-balls as Non-relativistic Condensates, JCAP 1408 (2014) 051, [1405.3233].

[31] S. R. Coleman, Q Balls, Nucl. Phys. B262 (1985) 263.

[32] E. W. Kolb and I. I. Tkachev, Axion miniclusters and Bose stars, Phys. Rev. Lett. 71 (1993) 3051–3054, [hep-ph/9303313].

[33] E. W. Kolb and I. I. Tkachev, Nonlinear axion dynamics and formation of cosmological pseudosolitons, Phys. Rev. D49 (1994) 5040–5051, [astro-ph/9311037].

[34] L. Visinelli, S. Baum, J. Redondo, K. Freese and F. Wilczek, Dilute and dense axion stars, Phys. Lett. B777 (2018) 64–72, [1710.08910].

[35] J. F. Navarro, V. R. Eke and C. S. Frenk, The cores of dwarf galaxy haloes, Monthly Notices of the Royal Astronomical Society 283 (12, 1996) L72–L78, [http://oup.prod.sis.lan/mnras/article-pdf/283/3/L72/3305901/283- 3-L72.pdf].

[36] J. F. Navarro, C. S. Frenk and S. D. M. White, A universal density profile from hierarchical clustering, The Astrophysical Journal 490 (dec, 1997) 493–508.

[37] T. Fukushige and J. Makino, On the Origin of Cusps in Dark Matter Halos, Astrophys. J. 477 (1997) L9, [astro-ph/9610005].

[38] A. Borriello and P. Salucci, The Dark matter distribution in disk galaxies, Mon. Not. Roy. Astron. Soc. 323 (2001) 285, [astro-ph/0001082].

[39] G. Gilmore, M. I. Wilkinson, R. F. G. Wyse, J. T. Kleyna, A. Koch, N. W. Evans et al., The Observed properties of Dark Matter on small spatial scales, Astrophys. J. 663 (2007) 948–959, [astro-ph/0703308].

[40] S.-H. Oh, W. J. G. de Blok, F. Walter, E. Brinks and R. C. Kennicutt, Jr, High-resolution dark matter density profiles of THINGS dwarf galaxies: Correcting for non-circular motions, Astron. J. 136 (2008) 2761, [0810.2119].

[41] W. Hu, R. Barkana and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett. 85 (2000) 1158–1161, [astro-ph/0003365].

[42] L. Hui, J. P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev. D95 (2017) 043541, [1610.08297].

[43] Y. Shtanov, J. H. Traschen and R. H. Brandenberger, Universe reheating after inflation, Phys. Rev. D51 (1995) 5438–5455, [hep-ph/9407247].

[44] L. Kofman, A. D. Linde and A. A. Starobinsky, Nonthermal phase transitions after inflation, Phys. Rev. Lett. 76 (1996) 1011–1014, [hep-th/9510119].

[45] L. Kofman, A. D. Linde and A. A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D56 (1997) 3258–3295, [hep-ph/9704452].

[46] M. Yoshimura, Catastrophic particle production under periodic perturbation, Prog. Theor. Phys. 94 (1995) 873–898, [hep-th/9506176].

[47] J. Eby, K. Mukaida, M. Takimoto, L. C. R. Wijewardhana and M. Yamada, Classical nonrelativistic e↵ective field theory and the role of gravitational interactions, Phys. Rev. D99 (2019) 123503, [1807.09795].

[48] S. Kasuya and M. Taira, Quadratic chaotic inflation with a logarithmic-corrected mass, Phys. Rev. D98 (2018) 123515, [1803.10571].

[49] M. Shifman, Advanced Topics in Quantum Field Theory: A Lecture Course. Cambridge University Press, 2012, 10.1017/CBO9781139013352.

[50] A. C. Scott, F. Y. F. Chu and D. W. McLaughlin, The soliton: A new concept in applied science, Proceedings of the IEEE 61 (Oct, 1973) 1443–1483.

[51] S. Coleman, Aspects of Symmetry: Selected Erice Lectures. Cambridge University Press, 1985, 10.1017/CBO9780511565045.

[52] G. H. Derrick, Comments on nonlinear wave equations as models for elementary particles, Journal of Mathematical Physics 5 (1964) 1252–1254, [https://doi.org/10.1063/1.1704233].

[53] Ya. B. Zeldovich, I. Yu. Kobzarev and L. B. Okun, Cosmological Consequences of the Spontaneous Breakdown of Discrete Symmetry, Zh. Eksp. Teor. Fiz. 67 (1974) 3–11.

[54] G. Hooft, Magnetic monopoles in unified gauge theories, Nuclear Physics B 79 (1974) 276 – 284.

[55] A. M. Polyakov, Particle Spectrum in the Quantum Field Theory, JETP Lett. 20 (1974) 194–195.

[56] T. W. B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A9 (1976) 1387–1398.

[57] N. A. Voronov, I. Yu. Kobzarev and N. B. Konyukhova, Possible Existence of a New Type of Mesons, Pisma Zh. Eksp. Teor. Fiz. 22 (1975) 590–594.

[58] I. L. Bogolyubskiˇı and V. G. Makhan’kov, Dynamics of spherically symmetrical pulsons of large amplitude, Soviet Journal of Experimental and Theoretical Physics Letters 25 (Jan., 1977) 107.

[59] L. D. Landau and E. M. Lifshits, Mechanics. Butterworth-Hinemann, New York, 3rd ed., 1976.

[60] K. Lee and E. J. Weinberg, Tunneling without barriers, Nuclear Physics B 267 (1986) 181 – 202.

[61] A. Kusenko, Small Q balls, Phys. Lett. B404 (1997) 285, [hep-th/9704073].

[62] I. E. Gulamov, E. Ya. Nugaev and M. N. Smolyakov, Theory of U(1) gauged Q-balls revisited, Phys. Rev. D89 (2014) 085006, [1311.0325].

[63] T. D. Lee and Y. Pang, Nontopological solitons, Phys. Rept. 221 (1992) 251–350.

[64] M. I. Tsumagari, The Physics of Q-Balls, Ph.D. thesis, Nottingham U., 2009. 0910.3845.

[65] P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, WISPy Cold Dark Matter, JCAP 1206 (2012) 013, [1201.5902].

[66] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev. D81 (2010) 123530, [0905.4720].

[67] B. S. Acharya, K. Bobkov and P. Kumar, An M Theory Solution to the Strong CP Problem and Constraints on the Axiverse, JHEP 11 (2010) 105, [1004.5138].

[68] D. J. E. Marsh, The Axiverse Extended: Vacuum Destabilisation, Early Dark Energy and Cosmological Collapse, Phys. Rev. D83 (2011) 123526, [1102.4851].

[69] T. Higaki and T. Kobayashi, Note on moduli stabilization, supersymmetry breaking and axiverse, Phys. Rev. D84 (2011) 045021, [1106.1293].

[70] Y. Nomura, T. Watari and M. Yamazaki, Pure Natural Inflation, Phys. Lett. B776 (2018) 227–230, [1706.08522].

[71] K. Mukaida. private communication.

[72] V. Mukhanov, Physical Foundations of Cosmology. Cambridge University Press, Oxford, 2005.

[73] M. Nori, R. Murgia, V. Irˇsiˇc, M. Baldi and M. Viel, Lyman forest and non-linear structure characterization in Fuzzy Dark Matter cosmologies, Monthly Notices of the Royal Astronomical Society 482 (10, 2018) 3227–3243, [https://academic.oup.com/mnras/article-pdf/482/3/3227/26653692/sty2888.pdf].

[74] Particle Data Group collaboration, M. Tanabashi et al., Review of Particle Physics, Phys. Rev. D98 (2018) 030001.

[75] S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications. Cambridge University Press, 2013.

[76] L. H. Ryder, Quantum Field Theory. Cambridge University Press, 2 ed., 1996, 10.1017/CBO9780511813900.

[77] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory. Addison-Wesley, Reading, USA, 1995.

[78] K. Saikawa, Production and evolution of axion dark matter in the early universe, Ph.D. thesis, The University of Tokyo, 2013.

[79] B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Mathematics of Computation 31 (1977) 629–651.

[80] A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu. S. Tyupkin, Pseudoparticle Solutions of the Yang-Mills Equations, Phys. Lett. 59B (1975) 85–87.

[81] R. Bott, An application of the morse theory to the topology of lie-groups, Bulletin de la Soci´et´e Math´ematique de France 84 (1956) 251–281.

[82] A. Belavin, A. Polyakov, A. Schwartz and Y. Tyupkin, Pseudoparticle solutions of the yang-mills equations, Physics Letters B 59 (1975) 85 – 87.

[83] S. Weinberg, The U(1) Problem, Phys. Rev. D11 (1975) 3583–3593.

[84] G. ’t Hooft, Computation of the Quantum E↵ects Due to a Four-Dimensional Pseudoparticle, Phys. Rev. D14 (1976) 3432–3450.

[85] T. P. Cheng and L. F. Li, GAUGE THEORY OF ELEMENTARY PARTICLE PHYSICS. 1984.

[86] J. E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys. 82 (2010) 557–602, [0807.3125].

[87] S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C77 (2017) 112, [1607.00299].

[88] C. Vafa and E. Witten, Restrictions on symmetry breaking in vector-like gauge theories, Nuclear Physics B 234 (1984) 173 – 188.

[89] C. Vafa and E. Witten, Parity conservation in quantum chromodynamics, Phys. Rev. Lett. 53 (Aug, 1984) 535–536.

[90] G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034, [1511.02867].

参考文献をもっと見る