リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dispensable role of Rac1 and Rac3 after cochlear hair cell specification」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dispensable role of Rac1 and Rac3 after cochlear hair cell specification

Nakamura, Takashi Sakaguchi, Hirofumi Mohri, Hiroaki Ninoyu, Yuzuru Goto, Akihiro Yamaguchi, Taro Hishikawa, Yoshitaka Matsuda, Michiyuki Saito, Naoaki Ueyama, Takehiko 神戸大学

2023.07

概要

Rac small GTPases play important roles during embryonic development of the inner ear; however, little is known regarding their function in cochlear hair cells (HCs) after specification. Here, we revealed the localization and activation of Racs in cochlear HCs using GFP-tagged Rac plasmids and transgenic mice expressing a Rac1-fluorescence resonance energy transfer (FRET) biosensor. Furthermore, we employed Rac1-knockout (Rac1-KO, Atoh1-Cre;Rac1ᶠˡᵒˣ/ᶠˡᵒˣ) and Rac1 and Rac3 double KO (Rac1/Rac3-DKO, Atoh1-Cre;Rac1ᶠˡᵒˣ/ᶠˡᵒˣ;Rac3⁻/⁻) mice, under the control of the Atoh1 promoter. However, both Rac1-KO and Rac1/Rac3-DKO mice exhibited normal cochlear HC morphology at 13 weeks of age and normal hearing function at 24 weeks of age. No hearing vulnerability was observed in young adult (6-week-old) Rac1/Rac3-DKO mice even after intense noise exposure. Consistent with prior reports, the results from Atoh1-Cre;tdTomato mice confirmed that the Atoh1 promoter became functional only after embryonic day 14 when the sensory HC precursors exit the cell cycle. Taken together, these findings indicate that although Rac1 and Rac3 contribute to the early development of sensory epithelia in cochleae, as previously shown, they are dispensable for the maturation of cochlear HCs in the postmitotic state or for hearing maintenance following HC maturation.

この論文で使われている画像

参考文献

1. Wu DK, Kelley MW (2012) Molecular mechanisms of inner ear

development. Cold Spring Harb Perspect Biol 4:a008409. https://​

doi.​org/​10.​1101/​cshpe​rspect.​a0084​09

2. Kelley MW (2006) Regulation of cell fate in the sensory epithelia

of the inner ear. Nat Rev Neurosci 7:837–849. https://​doi.​org/​10.​

1038/​nrn19​87

3. Bok J, Chang W, Wu DK (2007) Patterning and morphogenesis

of the vertebrate inner ear. Int J Dev Biol 51:521–533. https://​doi.​

org/​10.​1387/​ijdb.​07238​1jb

4. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie

N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999)

Math1: an essential gene for the generation of inner ear hair cells.

Science 284:1837–1841

5. Chen P, Johnson JE, Zoghbi HY, Segil N (2002) The role of

Math1 in inner ear development: uncoupling the establishment of

the sensory primordium from hair cell fate determination. Development 129:2495–2505

6. Atkinson PJ, Huarcaya Najarro E, Sayyid ZN, Cheng AG (2015)

Sensory hair cell development and regeneration: similarities and

differences. Development 142:1561–1571. https://​doi.​org/​10.​

1242/​dev.​114926

7. Elliott KL, Pavlinkova G, Chizhikov VV, Yamoah EN, Fritzsch B

(2021) Development in the mammalian auditory system depends

on transcription factors. Int J Mol Sci 22. https://​doi.​org/​10.​3390/​

ijms2​20841​89

8. Bok J, Zenczak C, Hwang CH, Wu DK (2013) Auditory ganglion

source of Sonic hedgehog regulates timing of cell cycle exit and

Journal of Molecular Medicine (2023) 101:843–854 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. differentiation of mammalian cochlear hair cells. Proc Natl Acad Sci

U S A 110:13869–13874. https://​doi.​org/​10.​1073/​pnas.​12223​41110

Fritzsch B, Dillard M, Lavado A, Harvey NL, Jahan I (2010)

Canal cristae growth and fiber extension to the outer hair cells of

the mouse ear require Prox1 activity. PLoS One 5:e9377. https://​

doi.​org/​10.​1371/​journ​al.​pone.​00093​77

Kopecky BJ, Jahan I, Fritzsch B (2013) Correct timing of proliferation and differentiation is necessary for normal inner ear development and auditory hair cell viability. Dev Dyn 242:132–147.

https://​doi.​org/​10.​1002/​dvdy.​23910

Cai T, Seymour ML, Zhang H, Pereira FA, Groves AK (2013)

Conditional deletion of Atoh1 reveals distinct critical periods for

survival and function of hair cells in the organ of Corti. J Neurosci 33:10110–10122. https://​doi.​org/​10.​1523/​JNEUR​OSCI.​

5606-​12.​2013

Chonko KT, Jahan I, Stone J, Wright MC, Fujiyama T, Hoshino M,

Fritzsch B, Maricich SM (2013) Atoh1 directs hair cell differentiation and survival in the late embryonic mouse inner ear. Dev Biol

381:401–410. https://​doi.​org/​10.​1016/j.​ydbio.​2013.​06.​022

Ueyama T, Eto M, Kami K, Tatsuno T, Kobayashi T, Shirai Y,

Lennartz MR, Takeya R, Sumimoto H, Saito N (2005) Isoformspecific membrane targeting mechanism of Rac during FcγRmediated phagocytosis: positive charge-dependent and independent targeting mechanism of Rac to the phagosome. J Immunol

175:2381–2390. https://​doi.​org/​10.​4049/​jimmu​nol.​175.4.​2381

Ueyama T (2019) Rho-family small GTPases: from highly polarized sensory neurons to cancer cells. Cells 8. https://​doi.​org/​10.​

3390/​cells​80200​92

Nakamura T, Ueyama T, Ninoyu Y, Sakaguchi H, Choijookhuu

N, Hishikawa Y, Kiyonari H, Kohta M, Sakahara M, de Curtis I

et al (2017) Novel role of Rac-Mid1 signaling in medial cerebellar development. Development 144:1863–1875. https://​doi.​org/​

10.​1242/​dev.​147900

Grimsley-Myers CM, Sipe CW, Geleoc GS, Lu X (2009) The

small GTPase Rac1 regulates auditory hair cell morphogenesis. J

Neurosci 29:15859–15869. https://d​ oi.o​ rg/1​ 0.1​ 523/J​ NEURO

​ SCI.​

3998-​09.​2009

Grimsley-Myers CM, Sipe CW, Wu DK, Lu X (2012) Redundant

functions of Rac GTPases in inner ear morphogenesis. Dev Biol

362:172–186. https://​doi.​org/​10.​1016/j.​ydbio.​2011.​12.​008

Duncan JS, Fritzsch B (2013) Continued expression of GATA3 is

necessary for cochlear neurosensory development. PLoS One 8:

e62046. https://​doi.​org/​10.​1371/​journ​al.​pone.​00620​46

Hebert JM, McConnell SK (2000) Targeting of cre to the Foxg1

(BF-1) locus mediates loxP recombination in the telencephalon

and other developing head structures. Dev Biol 222:296–306.

https://​doi.​org/​10.​1006/​dbio.​2000.​9732

Ohyama T, Groves AK (2004) Generation of Pax2-Cre mice by

modification of a Pax2 bacterial artificial chromosome. Genesis

38:195–199. https://​doi.​org/​10.​1002/​gene.​20017

Cox BC, Liu Z, Lagarde MM, Zuo J (2012) Conditional gene

expression in the mouse inner ear using Cre-loxP. J Assoc Res Otolaryngol 13:295–322. https://​doi.​org/​10.​1007/​s10162-​012-​0324-5

Dvorakova M, Macova I, Bohuslavova R, Anderova M, Fritzsch

B, Pavlinkova G (2020) Early ear neuronal development, but not

olfactory or lens development, can proceed without SOX2. Dev

Biol 457:43–56. https://​doi.​org/​10.​1016/j.​ydbio.​2019.​09.​003

Michalski N, Petit C (2015) Genetics of auditory mechanoelectrical transduction. Pflugers Arch 467:49–72. https://​doi.​

org/​10.​1007/​s00424-​014-​1552-9

Krey JF, Chatterjee P, Dumont RA, O'Sullivan M, Choi D, Bird

JE, Barr-Gillespie PG (2020) Mechanotransduction-dependent

control of stereocilia dimensions and row identity in inner hair

cells. Curr Biol 30:442–454 e447. https://​doi.​org/​10.​1016/j.​cub.​

2019.​11.​076

853

25. Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K,

Feng F, Jones K, Lee J, Fritzsch B (2005) Smaller inner ear sensory

epithelia in Neurog 1 null mice are related to earlier hair cell cycle

exit. Dev Dyn 234:633–650. https://​doi.​org/​10.​1002/​dvdy.​20551

26. Ueyama T, Sakuma M, Nakatsuji M, Uebi T, Hamada T, Aiba

A, Saito N (2020) Rac-dependent signaling from keratinocytes

promotes differentiation of intradermal white adipocytes. J Invest

Dermatol 140:75–84 e76. https://​doi.​org/​10.​1016/j.​jid.​2019.0​ 6.1​ 40

27. Corbetta S, Gualdoni S, Albertinazzi C, Paris S, Croci L, Consalez

GG, de Curtis I (2005) Generation and characterization of Rac3

knockout mice. Mol Cell Biol 25:5763–5776. https://​doi.​org/​10.​

1128/​MCB.​25.​13.​5763-​5776.​2005

28. Ueyama T, Sakaguchi H, Nakamura T, Goto A, Morioka S,

Shimizu A, Nakao K, Hishikawa Y, Ninoyu Y, Kassai H et al

(2014) Maintenance of stereocilia and apical junctional complexes

by Cdc42 in cochlear hair cells. J Cell Sci 127:2040–2052. https://​

doi.​org/​10.​1242/​jcs.​143602

29. Schneider ME, Dose AC, Salles FT, Chang W, Erickson FL,

Burnside B, Kachar B (2006) A new compartment at stereocilia tips defined by spatial and temporal patterns of myosin IIIa

expression. J Neurosci 26:10243–10252. https://​doi.​org/​10.​1523/​

JNEUR​OSCI.​2812-​06.​2006

30. Goto A, Sumiyama K, Kamioka Y, Nakasyo E, Ito K, Iwasaki M,

Enomoto H, Matsuda M (2013) GDNF and endothelin 3 regulate

migration of enteric neural crest-derived cells via protein kinase

A and Rac1. J Neurosci 33:4901–4912. https://​doi.​org/​10.​1523/​

JNEUR​OSCI.​4828-​12.​2013

31. Mohri H, Ninoyu Y, Sakaguchi H, Hirano S, Saito N, Ueyama

T (2021) Nox3-derived superoxide in cochleae induces sensorineural hearing loss. J Neurosci 41:4716–4731. https://​doi.​org/​10.​

1523/​JNEUR​OSCI.​2672-​20.​2021

32. Ueyama T, Ninoyu Y, Nishio SY, Miyoshi T, Torii H, Nishimura

K, Sugahara K, Sakata H, Thumkeo D, Sakaguchi H et al (2016)

Constitutive activation of DIA1 (DIAPH1) via C-terminal truncation causes human sensorineural hearing loss. EMBO Mol Med

8:1310–1324. https://​doi.​org/​10.​15252/​emmm.​20160​6609

33. Dayaratne MW, Vlajkovic SM, Lipski J, Thorne PR (2014) Kolliker’s organ and the development of spontaneous activity in the

auditory system: implications for hearing dysfunction. BioMed

Res Int 367939. https://​doi.​org/​10.​1155/​2014/​367939

34. Ivanchenko MV, Hanlon KS, Hathaway DM, Klein AJ, Peters

CW, Li Y, Tamvakologos PI, Nammour J, Maguire CA, Corey

DP (2021) AAV-S: a versatile capsid variant for transduction

of mouse and primate inner ear. Mol Ther Methods Clin Dev

21:382–398. https://​doi.​org/​10.​1016/j.​omtm.​2021.​03.​019

35. Yagi S, Matsuda M, Kiyokawa E (2012) Suppression of Rac1

activity at the apical membrane of MDCK cells is essential for

cyst structure maintenance. EMBO Rep 13:237–243. https://​doi.​

org/​10.​1038/​embor.​2011.​249

36. Couto A, Mack NA, Favia L, Georgiou M (2017) An apicobasal

gradient of Rac activity determines protrusion form and position.

Nat Commun 8:15385. https://​doi.​org/​10.​1038/​ncomm​s15385

37. Tarchini B, Lu X (2019) New insights into regulation and

function of planar polarity in the inner ear. Neurosci Lett

709:134373. https://​doi.​org/​10.​1016/j.​neulet.​2019.​134373

38. Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto

K, Van Itallie CM, Beyer LA, Halsey K, Gardner DJ, Wilcox ER

et al (2003) Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 12:2049–2061

39. Martinelli S, Krumbach OHF, Pantaleoni F, Coppola S, Amin E,

Pannone L, Nouri K, Farina L, Dvorsky R, Lepri F et al (2018)

Functional dysregulation of CDC42 causes diverse developmental

phenotypes. Am J Hum Genet 102:309–320. https://​doi.​org/​10.​

1016/j.​ajhg.​2017.​12.​015

13

854

40. Uehara T, Suzuki H, Okamoto N, Kondoh T, Ahmad A, O’Connor

BC, Yoshina S, Mitani S, Kosaki K, Takenouchi T (2019) Pathogenetic basis of Takenouchi-Kosaki syndrome: electron microscopy study using platelets in patients and functional studies in a

Caenorhabditis elegans model. Sci Rep 9:4418. https://d​ oi.o​ rg/1​ 0.​

1038/​s41598-​019-​40988-7

41. Rossman KL, Worthylake DK, Snyder JT, Siderovski DP, Campbell

SL, Sondek J (2002) A crystallographic view of interactions between

Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange.

EMBO J 21:1315–1326. https://​doi.​org/​10.​1093/​emboj/​21.6.​1315

42. Bucciol G, Pillay B, Casas-Martin J, Delafontaine S, Proesmans

M, Lorent N, Coolen J, Tousseyn T, Bossuyt X, Ma CS et al

(2020) Systemic inflammation and myelofibrosis in a patient

with Takenouchi-Kosaki syndrome due to CDC42 Tyr64Cys

mutation. J Clin Immunol 40:567–570. https://​doi.​org/​10.​1007/​

s10875-​020-​00742-5

43. Reijnders MRF, Ansor NM, Kousi M, Yue WW, Tan PL, Clarkson

K, Clayton-Smith J, Corning K, Jones JR, Lam WWK et al (2017)

RAC1 missense mutations in developmental disorders with diverse

phenotypes. Am J Hum Genet 101:466–477. https://​doi.​org/​10.​

1016/j.​ajhg.​2017.​08.​007

44. Chen L, Liao G, Waclaw RR, Burns KA, Linquist D, Campbell K,

Zheng Y, Kuan CY (2007) Rac1 controls the formation of midline commissures and the competency of tangential migration in

ventral telencephalic neurons. J Neurosci 27:3884–3893. https://​

doi.​org/​10.​1523/​JNEUR​OSCI.​3509-​06.​2007

13

Journal of Molecular Medicine (2023) 101:843–854

45. Hiraide T, Kaba Yasui H, Kato M, Nakashima M, Saitsu H (2019) A

de novo variant in RAC3 causes severe global developmental delay

and a middle interhemispheric variant of holoprosencephaly. J Hum

Genet 64:1127–1132. https://​doi.​org/​10.​1038/​s10038-​019-​0656-7

46. Costain G, Callewaert B, Gabriel H, Tan TY, Walker S, Christodoulou

J, Lazar T, Menten B, Orkin J, Sadedin S et al (2019) De novo missense

variants in RAC3 cause a novel neurodevelopmental syndrome. Genet

Med 21:1021–1026. https://​doi.​org/​10.​1038/​s41436-​018-​0323-y

47. Hsu AP, Donko A, Arrington ME, Swamydas M, Fink D, Das A,

Escobedo O, Bonagura V, Szabolcs P, Steinberg HN et al (2019)

Dominant activating RAC2 mutation with lymphopenia, immunodeficiency, and cytoskeletal defects. Blood 133:1977–1988.

https://​doi.​org/​10.​1182/​blood-​2018-​11-​886028

48. Lougaris V, Baronio M, Gazzurelli L, Benvenuto A, Plebani A

(2020) RAC2 and primary human immune deficiencies. J Leukoc

Biol 108:687–696. https://d​ oi.o​ rg/1​ 0.1​ 002/J​ LB.5​ MR052​ 0-1​ 94RR

49. Driver EC, Sillers L, Coate TM, Rose MF, Kelley MW (2013) The

Atoh1-lineage gives rise to hair cells and supporting cells within

the mammalian cochlea. Dev Biol 376:86–98. https://​doi.​org/​10.​

1016/j.​ydbio.​2013.​01.​005

50. Nordmann AS, Bohne BA, Harding GW (2000) Histopathological

differences between temporary and permanent threshold shift. Hear

Res 139:13–30. https://​doi.​org/​10.​1016/​s0378-​5955(99)​00163-x

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る