リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Localized laccase activity modulates distribution of lignin polymers in gymnosperm compression wood」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Localized laccase activity modulates distribution of lignin polymers in gymnosperm compression wood

Hiraide, Hideto Tobimatsu, Yuki Yoshinaga, Arata Lam, Pui Ying Kobayashi, Masaru Matsushita, Yasuyuki Fukushima, Kazuhiko Takabe, Keiji 京都大学 DOI:10.1111/nph.17264

2021.06

概要

The woody stems of coniferous gymnosperms produce specialised compression wood to adjust the stem growth orientation in response to gravitropic stimulation. During this process, tracheids develop a compression-wood-specific S2L cell wall layer with lignins highly enriched with p-hydroxyphenyl (H)-type units derived from H-type monolignol, whereas lignins produced in the cell walls of normal wood tracheids are exclusively composed of guaiacyl (G)-type units from G-type monolignol with a trace amount of H-type units. We show that laccases, a class of lignin polymerisation enzymes, play a crucial role in the spatially organised polymerisation of H-type and G-type monolignols during compression wood formation in Japanese cypress (Chamaecyparis obtusa). We performed a series of chemical-probe-aided imaging analysis on C. obtusa compression wood cell walls, together with gene expression, protein localisation and enzymatic assays of C. obtusa laccases. Our data indicated that CoLac1 and CoLac3 with differential oxidation activities towards H-type and G-type monolignols were precisely localised to distinct cell wall layers in which H-type and G-type lignin units were preferentially produced during the development of compression wood tracheids. We propose that, not only the spatial localisation of laccases, but also their biochemical characteristics dictate the spatial patterning of lignin polymerisation in gymnosperm compression wood.

この論文で使われている画像

参考文献

Allona I, Quinn M, Shoop E, Swope K, St Cyr S, Carlis J, Riedl J, Retzel E, Campbell MM, Sederoff R et al. 1998. Analysis of xylem formation in pine by cDNA sequencing. Proceedings of the National Academy of Sciences, USA 95: 9693–9698.

Alm´eras T, Clair B. 2016. Critical review on the mechanisms of maturation stress generation in trees. Journal of the Royal Society Interface 13: 20160550.

Barros J, Serk H, Granlund I, Pesquet E. 2015. The cell biology of lignification in higher plants. Annals of Botany 115: 1053–1074.

Bedon F, Grima-Pettenati J, Mackay J. 2007. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC Plant Biology 7: 17.

Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, C´ezard L, Le Bris P, Borrega N, Herve J, Blondet E, Balzergue S et al. 2011. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. The Plant Cell 23: 1124–1137.

Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54: 519–546.

Bonawitz ND, Kim JI, Tobimatsu Y, Ciesielski PN, Anderson NA, Ximenes E, Maeda J, Ralph J, Donohoe BS, Ladisch M et al. 2014. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 509: 376–380.

Brennan M, McLean JP, Altaner CM, Ralph J, Harris PJ. 2012. Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiata. Cellulose 19: 1385–1404.

Brown CL. 1971. Trees, structure and function. Berlin, Germany: Springer-Verlag, 98–99.

Cesarino I, Arau´jo P, Sampaio Mayer JL, Vicentini R, Berthet S, Demedts B, Vanholme B, Boerjan W, Mazzafera P. 2013. Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S: G ratio of Arabidopsis lac17 mutant. Journal of Experimental Botany 64: 1769–1781.

Chang S, Mahon EL, MacKay HA, Rottmann WH, Strauss SH, Powell WA, Coffey, V, Lu H, Mansfield, SD et al. 2018. Genetic engineering of trees: progress and new horizons. In Vitro Cellular & Developmental Biology - Plant 54: 341–376.

Chou YE, Schuetz M, Hoffmann N, Watanabe Y, Sibout R, Samuels AL. 2018. Distribution, mobility, and anchoring of lignin-related oxidative enzymes in Arabidopsis secondary cell walls. Journal of Experimental Botany 69: 1849–1859.

Cruz N, M´endez T, Ramos P, Urbina D, Vega A, Guti´errez RA, Moya-Le´on MA, Herrera R. 2019. Induction of PrMADS10 on the lower side of bent pine tree stems: potential role in modifying plant cell wall properties and wood anatomy. Scientific Reports 9: 18981.

Dixon RA, Barros J. 2019. Lignin biosynthesis: old roads revisited and new roads explored. Open Biology 9: 190215.

Donaldson LA. 2001. Lignification and lignin topochemistry - an ultrastructural view. Phytochemistry 57: 859–873.

Donaldson LA, Knox JP. 2012. Localisation of cell wall polysaccharides in normal and compression wood of radiata pine: relationships with lignifications and microfibril orientation. Plant Physiology 158: 642–653.

Donaldson LA, Radotic K. 2013. Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood. Journal of Microscopy 251: 178–187.

Frasconi M, Favero G, Boer H, Koivula A, Mazzei F. 2010. Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1804: 899–908.

Fukushima K, Taguchi S, Matsui N, Yasuda S. 1997. Distribution and seasonal changes of monolignol glucosides in Pinus thunbergii. Mokuzai Gakkaishi 43: 254–259.

Fukushima K, Terashima N. 1991. Heterogeneity in formation of lignin. Wood Science and Technology 25: 259–270.

Groover A. 2016. Gravitropisms and reaction woods of forest trees – evolution, functions and mechanisms. New Phytologist 211: 790–802.

Hejnowicz Z. 1997. Graviresponses in herbs and trees: a major role for the redistribution of tissue and growth stresses. Planta 203: S136–S146.

Hiraide H, Yoshida M, Ihara K, Sato S, Yamamoto H. 2014. High lignin deposition on the outer region of the secondary wall middle layer in compression wood matches the expression of a Laccase gene in Chamaecyparis obtusa. Journal of Plant Biology Research 3: 87–100.

Hiraide H, Yoshida M, Sato S, Yamamoto H. 2016. In situ detection of laccase activity and immunolocalisation of a compression-wood-specific laccase (CoLac1) in differentiating xylem of Chamaecyparis obtusa. Functional Plant Biology 43: 542–552.

Hoffmann N, Benske A, Betz H, Schuetz M, Samuels LA. 2020. Laccases and peroxidases co-localize in lignified secondary cell walls throughout stem development. Plant Physiology 184: 806–822.

Kim H, Ralph J. 2010. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Organic & Biomolecular Chemistry 8: 576–591.

Kim JS, Awano T, Yoshinaga A, Takabe K. 2010. Immunolocalization of b-1-4- galactan and its relationship with lignin distribution in developing compression wood of Cryptomeria japonica. Planta 232: 109–119.

Kobayashi T, Taguchi H, Shigematsu M, Tanahashi M. 2005. Substituent effects of 3,5-disubstituted p-coumaryl alcohols on their oxidation using horseradish peroxidase–H2O2 as the oxidant. Journal of Wood Science 51: 607– 614.

Koutaniemi S, Warinowski T, K€ark€onen A, Alatalo E, Fossdal CG, Saranp€a€a P, Laakso T, Fagerstedt KV, Simola LK, Paulin L et al. 2007. Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Molecular Biology 65: 311–328.

Lee M-H, Jeon HS, Kim SH, Chung JH, Roppolo D, Lee H-J, Cho HJ, Tobimatsu Y, Ralph J, Park OK. 2019. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO Journal 38: e101948.

Lee Y, Rubio MC, Alassimone J, Geldner N. 2013. A mechanism for localized lignin deposition in the endodermis. Cell 153: 402–412.

Lee Y, Yoon TH, Lee J, Jeon SY, Lee JH, Lee MK, Chen H, Yun J, Oh SY, Wen X et al. 2018. A lignin molecular brace controls precision processing of cell walls critical for surface integrity in Arabidopsis. Cell 173: 1468–1480, e1469.

Li X, Yang X, Wu HX. 2013. Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism. BMC Genomics 14: 768.

Lion C, Simon C, Huss B, Blervacq A-S, Tirot L, Toybou D, Spriet C, Slomianny C, Guerardel Y, Hawkins S et al. 2017. BLISS: A bioorthogonal dual-labeling strategy to unravel lignification dynamics in plants. Cell Chemical Biology 24: 326–338.

Mahon EL, Mansfield SD. 2019. Tailor-made trees: engineering lignin for ease of processing and tomorrow’s bioeconomy. Current Opinion in Biotechnology 56: 147–155.

Mayer AM, Staples RC. 2002. Laccase: new functions for an old enzyme.

Phytochemistry 60: 551–565.

McDougall GJ. 2000. A comparison of proteins from the developing xylem of compression and non-compression wood of branches of Sitka spruce (Picea sitchensis) reveals a differentially expressed laccase. Journal of Experimental Botany 51: 1395–1401.

Meents MJ, Watanabe Y, Samuels AL. 2018. The cell biology of secondary cell wall biosynthesis. Annals of Botany 121: 1107–1125.

Nagata T, Nemoto Y, Hasezawa S. 1992. Tobacco BY-2 cell line as the ‘HeLa’ cell in the cell biology of higher plants. International Review of Cytology 132: 1– 30.

Perkins M, Smith RA, Samuels L. 2019. The transport of monomers during lignification in plants: anything goes but how? Current Opinion in Biotechnology 56: 69–74.

Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SA, Reddy MSS, Chen F, Dixon RA. 2006. Effects of coumarate 3-hydroxylase down- regulation on lignin structure. Journal of Biological Chemistry 281: 8843–8853.

Ralph J, Lapierre C, Boerjan W. 2019. Lignin structure and its engineering.

Current Opinion in Biotechnology 56: 240–249.

Ramos P, Le Provost G, Gantz C, Plomion C, Herrera R. 2012. Transcriptional analysis of differentially expressed genes in response to stem inclination in young seedlings of pine. Plant Biology 14: 923–933.

Ranocha P, McDougall G, Hawkins S, Sterjiades R, Borderies G, Stewart D, Cabanes-Macheteau M, Boudet AM, Goffner D. 1999. Biochemical characterization, molecular cloning and expression of laccases - a divergent gene family - in poplar. European Journal of Biochemistry 259: 485–495.

Sato S, Hiraide H, Yoshida M, Yamamoto H. 2013. Changes in xylem tissue and laccase transcript abundance associated with posture recovery in Chamaecyparis obtusa saplings growing on an incline. Functional Plant Biology 40: 637–643.

Sato S, Yoshida M, Hiraide H, Ihara K, Yamamoto H. 2014. Transcriptome analysis of reaction wood in gymnosperms by next-generation sequencing. American Journal of Plant Sciences 5: 2785–2798.

Sato Y, Whetten RW. 2006. Characterization of two laccases of loblolly pine (Pinus taeda) expressed in tobacco BY-2 cells. Journal of Plant Research 119: 581–588.

Schuetz M, Benske A, Smith RA, Watanabe Y, Tobimatsu Y, Ralph J, Demura T, Ellis B, Samuels AL, Samuels AL. 2014. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiology 166: 798– 807.

Takeda Y, Tobimatsu Y, Karlen SD, Koshiba T, Suzuki S, Yamamura M, Murakami S, Mukai M, Hattori T, Osakabe K et al. 2018. Downregulation of p-COUMAROYL ESTER 3-HYDROXYLASE in rice leads to altered cell wall structures and improves biomass saccharification. The Plant Journal 95: 796–811.

Takenaka Y, Watanabe Y, Schuetz M, Unda F, Hill JL, Phookaew P, Yoneda A, Mansfield SD, Samuels L, Ohtani M et al. 2018. Patterned deposition of xylan and lignin is independent from that of the secondary wall cellulose of Arabidopsis xylem vessels. The Plant Cell 30: 2663–2676.

Timell TE. 1986. Compression wood in gymnosperms, vol. 1. Berlin, Germany: Springer.

Tobimatsu Y, Davidson CL, Grabber JH, Ralph J. 2011. Fluorescence-tagged monolignols: synthesis and application to studying in vitro lignification.

Biomacromolecules 12: 1752–1761.

Tobimatsu Y, Schuetz M. 2019. Lignin polymerization: how do plants manage the chemistry so well? Current Opinion in Biotechnology 56: 75–81.

Tobimatsu Y, Takano T, Kamitakahara H, Nakatsubo F. 2008. Studies on the dehydrogenative polymerizations of monolignol b-glycosides. Part 3: Horseradish peroxidase–catalyzed polymerizations of triandrin and isosyringin. Journal of Wood Chemistry and Technology 28: 69–83.

Tobimatsu Y, Wagner A, Donaldson L, Mitra P, Niculaes C, Dima O, Kim JI, Anderson N, Loque D, Boerjan W et al. 2013. Visualization of plant cell wall lignification using fluorescence-tagged monolignols. The Plant Journal 76: 357–366.

Tobimatsu Y, Wouwer DVd, Allen E, Kumpf R, Vanholme B, Boerjan W, Ralph J. 2014. A click chemistry strategy for visualization of plant cell wall lignification. Chemical Communications 50: 12262–12265.

Tokareva EN, Pranovich AV, Fardim P, Daniel G, Holmbom B. 2007. Analysis of wood tissues by time-of-flight secondary ion mass spectrometry.

Holzforschung 61: 647–655.

Tsuyama T, Matsushita Y, Fukushima K, Takabe K, Yazaki K, Kamei I. 2019. Proton gradient-dependent transport of p-glucocoumaryl alcohol in differentiating xylem of woody plants. Scientific Reports 9: 8900.

Turlapati PV, Kim K-W, Davin LB, Lewis NG. 2011. The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta 233: 439–470.

Umezawa T. 2018. Lignin modification in planta for valorization. Phytochemistry Reviews 17: 1305–1327.

Villalobos DP, D´ıaz-Moreno SM, Said el SS, Can~as RA, Osuna D, Van Kerckhoven SH, Bautista R, Claros MG, C´anovas FM, Cant´on FR. 2012. Reprogramming of gene expression during compression wood formation in pine: coordinated modulation of S-adenosylmethionine, lignin and lignan related genes. BMC Plant Biology 12: 100–116.

Wagner A, Ralph J, Akiyama T, Flint H, Phillips L, Torr K, Nanayakkara B, Te Kiri L. 2007. Exploring lignification in conifers by silencing hydroxycinnamoyl- CoA:shikimate hydroxycinnamoyltransferase in Pinus radiata. Proceedings of the National Academy of Sciences, USA 104: 11856–11861.

Wagner A, Tobimatsu Y, Phillips L, Flint H, Torr K, Donaldson L, Pears L, Ralph J. 2011. CCoAOMT suppression modifies lignin composition in Pinus radiata. The Plant Journal 67: 119–129.

Wagner A, Tobimatsu Y, Phillips L, Flint H, Geddes B, Lu F, Ralph, J. 2015. Syringyl lignin production in conifers: proof of concept in a pine tracheary element system. Proceedings of the National Academy of Sciences, USA 112: 6218–6223.

Wang J, Feng J, Jia W, Chang S, Li S, Li Y. 2015a. Lignin engineering through laccase modification: a promising field for energy plant improvement.

Biotechnology for Biofuels 8: 145.

Wang X, Zhuo C, Xiao X, Wang X, Docampo-Palacios ML, Chen F, Dixon RA. 2020. Substrate specificity of LACCASE8 facilitates polymerization of caffeyl alcohol for C-lignin biosynthesis in the seed coat of Cleome hassleriana. The Plant Cell 32: 3825–3845.

Wang Y, Bouchabke-Coussa O, Lebris P, Antelme S, Soulhat C, Gineau E, Dalmais M, Bendahmane A, Morin H, Mouille G et al. 2015. LACCASE5 is required for lignification of the Brachypodium distachyon culm. Plant Physiology

168: 192–204.

Whetten R, Sun YH, Zhang Y, Sederoff R. 2001. Functional genomics and cell wall synthesis in loblolly pine. Plant Molecular Biology 47: 275–291.

Xie T, Liu Z, Wang G. 2020. Structural basis for monolignol oxidation by a maize laccase. Nature Plants 6: 231–237.

Yamamoto H. 1998. Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation. Wood Science and Technology 32: 171–182.

Yamamoto H, Yoshida M, Okuyama T. 2002. Growth stress controls negative gravitropism in woody plant stems. Planta 216: 280–292.

Yamashita S, Yoshida M, Yamamoto H, Okuyama T. 2008. Screening genes that change expression during compression wood formation in Chamaecyparis obtusa. Tree Physiology 28: 1331–1340.

Yamashita S, Yoshida M, Yamamoto H. 2009. Relationship between development of compression wood and gene expression. Plant Science 176: 729–735.

Zhang M, Lapierre C, Nouxman NL, Nieuwoudt MK, Smith BG, Chavan RR, McArdle BH, Harris PJ. 2017. Location and characterization of lignin in tracheid cell walls of radiata pine (Pinus radiata D. Don) compression woods. Plant Physiology and Biochemistry 118: 187–198.

Zhao Q, Nakashima J, Chen F, Yin YB, Fu CX, Yun JF, Shao H, Wang XQ, Wang ZY, Dixon RA. 2013. LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. The Plant Cell 25: 3976–3987.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る