リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Thermal degradation of hemicellulose and cellulose in ball-milled cedar and beech wood」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Thermal degradation of hemicellulose and cellulose in ball-milled cedar and beech wood

Wang, Jiawei Minami, Eiji Asmadi, Mohd Kawamoto, Haruo 京都大学 DOI:10.1186/s10086-021-01962-y

2021

概要

The thermal degradation reactivities of hemicellulose and cellulose in wood cell walls are significantly different from the thermal degradation behavior of the respective isolated components. Furthermore, the degradation of Japanese cedar (Cryptomeria japonica, a softwood) is distinct from that of Japanese beech (Fagus crenata, a hardwood). Lignin and uronic acid are believed to play crucial roles in governing this behavior. In this study, the effects of ball milling for various durations of time on the degradation reactivities of cedar and beech woods were evaluated based on the recovery rates of hydrolyzable sugars from pyrolyzed wood samples. The applied ball-milling treatment cleaved the lignin β-ether bonds and reduced the crystallinity of cellulose, as determined by X-ray diffraction. Both xylan and glucomannan degraded in a similar temperature range, although the isolated components exhibited different reactivities because of the catalytic effect of uronic acid bound to the xylose chains. These observations can be explained by the more homogeneous distribution of uronic acid in the matrix of cell walls as a result of ball milling. As observed for holocelluloses, cellulose in the ball-milled woods degraded in two temperature ranges (below 320 °C and above); a significant amount of cellulose degraded in the lower temperature range, which significantly changed the shapes of the thermogravimetric curves. This report compares the results obtained for cedar and beech woods, and discusses them in terms of the thermal degradation of the matrix and cellulose microfibrils in wood cell walls and role of lignin. Such information is crucial for understanding the pyrolysis and heat treatment of wood.

この論文で使われている画像

参考文献

1. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis

mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86

2. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product

upgrading. Biomass Bioenergy 38:68–94

3. Wang J, Minami E, Kawamoto H (2020) Thermal reactivity of hemicellulose and cellulose in cedar and beech wood cell walls. J Wood Sci 66:41

4. Wang J, Asmadi M, Kawamoto H (2018) The effect of uronic acid moieties

on xylan pyrolysis. J Anal Appl Pyrolysis 136:215–221

5. Wang J, Minami E, Kawamoto H (2021) Location of uronic acid group in

Japanese cedar and Japanese beech wood cell walls as evaluated by the

influences of minerals on thermal reactivity. J Wood Sci 67:3

6. Wang J, Minami E, Asmadi M, Kawamoto H (2021) Effect of delignification

on thermal degradation reactivities of hemicellulose and cellulose in

wood cell walls. J Wood Sci 67:19

7. Piras CC, Fernández-Prieto S, De Borggraeve WM (2019) Ball milling: a

green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv 1:937–947

8. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol

production: a review. Bioresour Technol 83:1–11

9. Sipponen MH, Laakso S, Baumberger S (2014) Impact of ball milling

on maize (Zea mays L.) stem structural components and on enzymatic

hydrolysis of carbohydrates. Ind Crops Prod 61:130–136

10. Hideno A, Kawashima A, Anzoua KG, Yamada T (2013) Comparison of the

enzymatic digestibility of physically and chemically pretreated selected

line of diploid-Miscanthus sinensis Shiozuka and triploid-M.×giganteus.

Bioresour Technol 146:393–399

11. Crestini C, Melone F, Sette M, Saladino R (2011) Milled wood lignin: a

linear oligomer. Biomacromol 12:3928–3935

12. Ikeda T, Holtman K, Kadla JF, Chang H, Jameel H (2002) Studies on the

effect of ball milling on lignin structure using a modified DFRC method. J

Agric Food Chem 50:129–135

13. Obst JR, Kirk TK (1988) Isolation of lignin. Methods Enzymol 161:3–12

14. Fujimoto A, Matsumoto Y, Chang HM, Meshitsuka G (2005) Quantitative evaluation of milling effects on lignin structure during the isolation

process of milled wood lignin. J Wood Sci 51:89–91

15. Hideno A (2016) Comparison of the thermal degradation properties of

crystalline and amorphous cellulose, as well as treated lignocellulosic

biomass. BioResources 11:6309–6319

16. Mattonai M, Pawcenis D, del Seppia S, Łojewska J, Ribechini E (2018)

Effect of ball-milling on crystallinity index, degree of polymerization and

thermal stability of cellulose. Bioresour Technol 270:270–277

17. Ling Z, Wang T, Makarem M, Cintrón MS, Cheng HN, Kang X, Bacher M,

Potthast A, Rosenau T, King H, Delhom C, Nam S, Edwards JV, Kim SH, Xu

F, Frech Ad (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328

18. Forziati FH, Stone WK, Rowen JW, Appel WD (1950) Cotton powder for

infrared transmission measurements. J Res Natl Bur Stand 45:109

19. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects

of short-time vibratory ball milling on the shape of FT-IR spectra of wood

and cellulose. Vib Spectrosc 36:23–40

20. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for

estimating the degree of crystallinity of native cellulose using the X-ray

diffractometer. Text Res J 29:786–794

21. Rolando C, Monties B, Lapierre C (1992) Thioacidolysis. In: Lin SY, Dence

CW (eds) Methods in lignin chemistry. Springer, Heidelberg, pp 334–349

22. Bertaud F, Sundberg A, Holmbom B (2002) Evaluation of acid methanolysis for analysis of wood hemicelluloses and pectins. Carbohydr Polym

48:319–324

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Wang et al. J Wood Sci

(2021) 67:32

23. Bleton J, Mejanelle P, Sansoulet J, Goursaud S, Tchapla A (1996) Characterization of neutral sugars and uronic acids after methanolysis and trimethylsilylation for recognition of plant gums. J Chromatogr A 720:27–49

24. Li J, Kisara K, Danielsson S, Lindström ME, Gellerstedt G (2007) An

improved methodology for the quantification of uronic acid units in

xylans and other polysaccharides. Carbohydr Res 342:1442–1449

25. Asmadi M, Kawamoto H, Saka S (2017) Characteristics of softwood

and hardwood pyrolysis in an ampoule reactor. J Anal Appl Pyrolysis

124:523–535

26. Yw HA, Thomas RL (1988) Simultaneous determination of neutral sugars

and uronic acids in hydrocolloids. J Food Sci 53:574–577

27. Sundberg A, Sundberg K, Lillandt C, Holmbom B (1996) Determination of

hemicelluloses and pectins in wood and pulp fibres by acid methanolysis

and gas chromatography. Nord Pulp Pap Res J 11:216–219

28. Jiang J, Wang J, Zhang X, Wolcott M (2017) Assessing multi-scale deconstruction of wood cell wall subjected to mechanical milling for enhancing enzymatic hydrolysis. Ind Crops Prod 109:498–508

29. Holtman KM, Chang HM, Jameel H, Kadla JF (2003) Elucidation of lignin

structure through degradative methods: comparison of modified DFRC

and thioacidolysis. J Agric Food Chem 51:3535–3540

30. Rabemanolontsoa H, Saka S (2013) Comparative study on chemical

composition of various biomass species. RSC Adv 3:3946–3956

Page 14 of 14

31. Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

32. Tyminski A, Timell TE (1960) The constitution of a glucomannan from

white spruce (Picea glauca). J Am Chem Soc 82:2823–2827

33. Kawamoto H (2016) Review of reactions and molecular mechanisms in

cellulose pyrolysis. Curr Org Chem 20:2444–2457

34. Kawamoto H, Saka S (2006) Heterogeneity in cellulose pyrolysis indicated

from the pyrolysis in sulfolane. J Anal Appl Pyrolysis 76:280–284

35. Zickler GA, Wagermaier W, Funari SS, Burghammer M, Paris P (2007) In situ

X-ray diffraction investigation of thermal decomposition of wood cellulose. J Anal Appl Pyrolysis 80:134–140

36. Kim DY, Nishiyama Y, Wada M, Kuga S, Okano T (2001) Thermal decomposition of cellulose crystallites in wood. Holzforschung 55:521–524

37. Timell TE (1961) Isolation of galactoglucomannans from the wood of

gymnosperms. Tappi 44:88–96

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る