リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Longitudinal changes of local gyrification index in schizophrenia spectrum disorders」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Longitudinal changes of local gyrification index in schizophrenia spectrum disorders

PHAM Viet Tien 富山大学

2022.03.23

概要

〔目的〕
Previous magnetic resonance imaging (MRI) studies reported increased brain gyrification in schizophrenia and schizotypal disorder, a prototypic disorder within the schizophrenia spectrum, possibly reflecting deviations in early neurodevelopment. However, it currently remains unclear whether the gyrification pattern longitudinally changes over the course of the schizophrenia spectrum.

〔方法並びに成績〕
Longitudinal MRI scans were obtained by a 1.5-T scanner from 23 patients with first-episode schizophrenia, 14 patients with schizotypal disorder, and 39 healthy subjects. Using FreeSurfer software, the local gyrification index (LGI) of entire cortex was obtained at baseline and follow-up scans (mean interscan interval = 2.7 years). Clinical symptoms were rated using the Scale for the Assessment of Positive and Negative Symptoms (SAPS/SANS) at the time of scanning. A general linear model was used for crosssectional and longitudinal group comparisons of the LGI and for whole brain LGI correlation analyses with clinical variables. This study was approved by the Committee on the Medical Ethics of Toyama University based on the declaration of Helsinki. Written informed consent was obtained from all subjects.

Baseline comparison demonstrated increased LGI of the frontal regions in the schizotypal but not in schizophrenia groups compared to controls. The schizophrenia group exhibited progressive LGI reduction predominantly in the fronto-temporal regions, while the LGIs were increased over time in the schizotypal and control groups in several brain regions. Longitudinal group comparison demonstrated that LGI increase over time was greater in the healthy subjects compared with schizotypal patients in the left frontal regions. In the schizophrenia group, greater LGI reduction over time in the right precentral and postcentral regions was significantly associated with less improvement of negative symptoms. Cumulative medication dosage was negatively correlated with longitudinal LGI increase in the right superior parietal area in the schizotypal group, but it did not affect the longitudinal LGI changes in schizophrenia group.

〔総括〕
This study demonstrated LGI reduction over time predominantly in the frontal and temporal areas during early phases of schizophrenia, which was partly associated with less improvement of negative symptoms. In contrast, the schizotypal patients showed increased LGI at baseline but showed no longitudinal LGI reduction. Thus, the gyrification patterns in schizophrenia spectrum may reflect both early neurodevelopmental abnormality as a vulnerability factor and active brain pathology in the early stages of schizophrenia.

この論文で使われている画像

参考文献

My academic thesis was based on Pham et al. (Front Aging Neurosci, in submission).

Alemán-Gómez, Y., Janssen, J., Schnack, H., Balaban, E., Pina-Camacho, L., Alfaro-Almagro, F., et al. (2013). The human cerebral cortex flattens during adolescence. J. Neurosci. 33, 15004-15010. doi: 10.1523/JNEUROSCI.1459-13.2013

American Psychiatric Association. (1994). Diagnostic and Statistical Manual of Mental Disorders, 4th ed. Washington DC: American Psychiatric Association Press.

Andreasen, N.C. (1983). The Scale for the Assessment of Negative Symptoms (SANS). Iowa City, IA: The University of Iowa, Iowa City.

Andreasen, N.C. (1984). The Scale for the Assessment of Positive Symptoms (SAPS). Iowa City, IA: The University of Iowa.

Armstrong, E., Schleicher, A., Omran, H., Curtis, M., Zilles, K. (1995). The ontogeny of human gyrification. Cereb. Cortex 5, 56-63. doi: 10.1093/cercor/5.1.56

Bartley, A.J., Jones, D.W., Weinberger, D.R. (1997). Genetic variability of human brain size and cortical gyral patterns. Brain 120, 257-269. doi: 10.1093/brain/120.2.257

Cao, B., Mwangi, B., Passos, I.C., Wu, M.J., Keser, Z., Zunta-Soares, G.B., et al. (2017). Lifespan Gyrification Trajectories of Human Brain in Healthy Individuals and Patients with Major Psychiatric Disorders. Sci. Rep. 7, 511. doi: 10.1038/s41598-017-00582-1

Falkai, P., Honer, W.G., Kamer, T., Dustert, S., Vogeley, K., Schneider-Axmann, T., et al. (2007). Disturbed frontal gyrification within families affected with schizophrenia. J. Psychiatr. Res. 41, 805-813. doi: 10.1016/j.jpsychires.2006.07.018

Fischl, B. (2012). FreeSurfer. Neuroimage 62, 774-781. doi: 10.1016/j.neuroimage.2012.01.021

Hagler, D.J Jr., Saygin, A.P., Sereno, M.I. (2007). Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage 33, 1093-1103. doi: 10.1016/j.neuroimage.2006.07.036

Han, K.M., Won, E., Kang, J., Kim, A., Yoon, H.K., Chang, H.S., et al. (2017). Local gyrification index in patients with major depressive disorder and its association with tryptophan hydroxylase-2 (TPH2) polymorphism. Hum. Brain Mapp. 38, 1299-1310. doi: 10.1002/hbm.23455

Harris, J.M., Moorhead, T.W., Miller, P., McIntosh, A.M., Bonnici, H.M., Owens, D.G., et al. (2007). Increased prefrontal gyrification in a large high-risk cohort characterizes those who develop schizophrenia and reflects abnormal prefrontal development. Biol. Psychiatry 62, 722-729. doi: 10.1016/j.biopsych.2006.11.027

Haukvik, U.K., Schaer, M., Nesvag, R., McNeil, T., Hartberg, C.B., Jonsson, E.G., et al. (2012). Cortical folding in Broca’s area relates to obstetric complications in schizophrenia patients and healthy controls. Psychol. Med. 42, 1329-1337. doi: 10.1017/S0033291711002315

Hazlett, E.A., Collazo, T., Zelmanova, Y., Entis, J.J., Chu, K.W., Goldstein, K.E., et al. (2012). Anterior limb of the internal capsule in schizotypal personality disorder: Fiber-tract counting, volume, and anisotropy. Schizophr. Res. 141, 119-127. doi: 10.1016/j.schres.2012.08.022

Kohli, J.S., Kinnear, M.K., Fong, C.H., Fishman, I., Carper, R.A., Müller, R.A. (2019). Local cortical gyrification is increased in children with autism spectrum disorders, but decreases rapidly in adolescents. Cereb. Cortex 29, 2412-2423. doi: 10.1093/cercor/bhy111

Li, H.J., Xu, Y., Zhang, K.R., Hoptman, M.J., Zuo, X.N. (2015). Homotopic connectivity in drug-naive, first-episode, early-onset schizophrenia. J. Child Psychol. Psychiatry 56, 432-443. doi: 10.1111/jcpp.12307

Li, T., Wang, Q., Zhang, J., Rolls, E.T., Yang, W., Palaniyappan, L., et al. (2017). Brain-Wide Analysis of Functional Connectivity in First-Episode and Chronic Stages of Schizophrenia. Schizophr. Bull. 43, 436-448. doi: 10.1093/schbul/sbw099

Nakamura, M., McCarley, R.W., Kubicki, M., Dickey, C.C., Niznikiewicz, M.A., Voglmaier, M.M., et al. (2005). Fronto-temporal disconnectivity in schizotypal personality disorder: A diffusion tensor imaging study. Biol. Psychiatry 58, 468-478. doi: 10.1016/j.biopsych.2005.04.016

Nanda, P., Tandon, N., Mathew, I.T., Giakoumatos, C.I., Abhishekh, H.A., Clementz, B.A., et al. (2014). Local gyrification index in probands with psychotic disorders and their firstdegree relatives. Biol. Psychiatry 76, 447-455. doi: 10.1016/j.biopsych.2013.11.018

Narr, K.L., Bilder, R.M., Kim, S., Thompson, P.M., Szeszko, P., Robinson, D., et al. (2004). Abnormal gyral complexity in first-episode schizophrenia. Biol. Psychiatry 55, 859-867. doi: 10.1016/j.biopsych.2003.12.027

Neilson, E., Bois, C., Clarke, T.K., Hall, L., Johnstone, E.C., Owens, D.G.C., et al. (2018). Polygenic risk for schizophrenia, transition and cortical gyrification: a high-risk study. Psychol. Med. 48, 1532-1539. doi: 10.1017/S0033291717003087

Nelson, E.A., Kraguljac, N.V., White, D.M., Jindal, R.D., Shin, A.L., Lahti, A.C. (2020). A prospective longitudinal investigation of cortical thickness and gyrification in schizophrenia. Can. J. Psychiatry 65, 381-391. doi: 10.1177/0706743720904598

Nenadic, I., Maitra, R., Dietzek, M., Langbein, K., Smesny, S., Sauer, H., et al. (2015). Prefrontal gyrification in psychotic bipolar I disorder vs. schizophrenia. J. Affect. Disord. 185, 104-107. doi: 10.1016/j.jad.2015.06.014

Nesvåg, R., Schaer, M., Haukvik, U.K., Westlye, L.T., Rimol, L.M., Lange, E.H., et al. (2014). Reduced brain cortical folding in schizophrenia revealed in two independent samples. Schizophr. Res. 152, 333-338. doi: 10.1016/j.schres.2013.11.032

Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P., Mechelli, A. (2011). Dysconnectivity in schizophrenia: where are we now? Neurosci. Biobehav. Rev. 35, 1110-1124. doi: 10.1016/j.neubiorev.2010.11.004

Palaniyappan, L., Crow, T.J., Hough, M., Voets, N.L., Liddle, P.F., James, S., et al. (2013a). Gyrification of Broca’s region is anomalously lateralized at onset of schizophrenia in adolescence and regresses at 2 year follow-up. Schizophr. Res. 147, 39-45. doi: 10.1016/j.schres.2013.03.028

Palaniyappan, L., Liddle, P.F. (2014). Diagnostic discontinuity in psychosis: a combined study of cortical gyrification and functional connectivity. Schizophr. Bull. 40, 675-684. doi: 10.1093/schbul/sbt050

Palaniyappan, L., Marques, T.R., Taylor, H., Handley, R., Mondelli, V., Bonaccorso, S., et al. (2013b). Cortical folding defects as markers of poor treatment response in first-episode psychosis. JAMA Psychiatry 70, 1031-1040. doi: 10.1001/jamapsychiatry.2013.203

Pantelis, C., Velakoulis, D., Wood, S.J., Yücel, M., Yung, A.R., Phillips, L.J., et al. (2007). Neuroimaging and emerging psychotic disorders: the Melbourne ultra-high risk studies. Int. Rev. Psychiatry 19, 371-381. doi: 10.1080/09540260701512079

Pham, V.T., Sasabayashi, D., Takahashi, T., Takayanagi, Y., Manabu, K., Furuichi, A., et al. Longitudinal changes in brain gyrification in schizophrenia spectrum disorders. Front Aging Neurosci, in submission.

Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G.L., Greenstein, D., et al. (2011). How does your cortex grow? J. Neurosci. 31, 7174-7177. doi: 10.1523/JNEUROSCI.0054- 11.2011

Reuter, M., Fischl, B. (2011). Avoiding asymmetry-induced bias in longitudinal image processing. Neuroimage 57, 19-21. doi: 10.1016/j.neuroimage.2011.02.076

Reuter, M., Rosas, H.D., Fischl, B. (2010). Highly accurate inverse consistent registration: a robust approach. Neuroimage 53, 1181-1196. doi: 10.1016/j.neuroimage.2010.07.020

Reuter, M., Schmansky, N.J., Rosas, H.D., Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61, 1402-1418. doi: 10.1016/j.neuroimage.2012.02.084

Sallet, P.C., Elkis, H., Alves, T.M., Oliveira, J.R., Sassi, E., Campi de Castro, C., et al. (2003). Reduced cortical folding in schizophrenia: an MRI morphometric study. Am. J. Psychiatry 160, 1606-1613. doi: 10.1176/appi.ajp.160.9.1606

Sasabayashi, D., Takayanagi, Y., Nishiyama, S., Takahashi, T., Furuichi, A., Kido, M., et al. (2017a). Increased frontal gyrification negatively correlates with executive function in patients with first-episode schizophrenia. Cereb. Cortex 27, 2686-2694. doi: 10.1093/cercor/bhw101

Sasabayashi, D., Takayanagi, Y., Takahashi, T., Koike, S., Yamasue, H., Katagiri, N., et al. (2017b). Increased occipital gyrification and development of psychotic disorders in individuals with an at-risk mental state: a multicenter study. Biol. Psychiatry 82, 737-745. doi: 10.1016/j.biopsych.2017.05.018

Sasabayashi, D., Takayanagi, Y., Takahashi, T., Nemoto, K., Furuichi, A., Kido, M., et al. (2020). Increased brain gyrification in the schizophrenia spectrum. Psychiatry Clin. Neurosci. 74, 70-76. doi: 10.1111/pcn.12939

Sasabayashi D, Takahashi T, Takayanagi Y, Suzuki M. (2021). Anomalous brain gyrification patterns in major psychiatric disorders: A systematic review and trans-diagnostic integration. Transl. Psychiatry 11, 176. doi: 10.1038/s41398-021-01297-8

Schaer, M., Cuadra, M.B., Tamarit, L., Lazeyras, F., Eliez, S., Thiran, J.P. (2008). A surfacebased approach to quantify local cortical gyrification. IEEE Trans. Med. Imaging 27, 161-170. doi: 10.1109/TMI.2007.903576

Shim, G., Oh, J.S., Jung, W.H., Jang, J.H., Choi, C.H., Kim, E., et al. (2010). Altered restingstate connectivity in subjects at ultra-high risk for psychosis: an fMRI study. Behav. Brain Funct. 6, 58. doi: 10.1186/1744-9081-6-58

Schultz, C.C., Wagner, G., Koch, K., Gaser, C., Roebel, M., Schachtzabel, C., et al. (2013). The visual cortex in schizophrenia: alterations of gyrification rather than cortical thickness—a combined cortical shape analysis. Brain Struct. Funct. 218, 51-58. doi: 10.1007/s00429- 011-0374-1

Siever, L.J., Davis, K.L. (2004). The pathophysiology of schizophrenia disorders: perspective from the spectrum. Am. J. Psychiatry 161, 398-413. doi: 10.1176/appi.ajp.161.3.398

Suzuki, M., Zhou, S.Y., Takahashi, T., Hagino, H., Kawasaki, Y., Niu, L., et al. (2005). Differential contributions of prefrontal and temporolimbic pathology to mechanisms of psychosis. Brain 128, 2109-2122. doi: 10.1093/brain/awh554

Takahashi, T., Suzuki, M., Zhou, S.Y., Tanino, R., Nakamura, K., Kawasaki, Y., et al. (2010). A follow-up MRI study of the superior temporal subregions in schizotypal disorder and first-episode schizophrenia. Schizophr. Res. 119, 65-74. doi: 10.1016/j.schres.2009.12.006

Takahashi, T., Suzuki, M. (2018). Brain morphologic changes in early stages of psychosis: Implications for clinical application and early intervention. Psychiatry Clin. Neurosci. 72, 556-571. doi: 10.1111/pcn.12670

Takayanagi, Y., Sasabayashi, D., Takahashi, T., Komori, Y., Furuichi, A., Kido, M., et al. (2019). Altered brain gyrification in deficit and non-deficit schizophrenia. Psychol. Med. 49, 573-580. doi: 10.1017/S0033291718001228

Tepest, R., Schwarzbach, C.J., Krug, B., Klosterkötter, J., Ruhrmann, S., Vogeley, K. (2013). Morphometry of structural disconnectivity indicators in subjects at risk and in agematched patients with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 263, 15-24. doi: 10.1007/s00406-012-0343-6

Toro, R., Burnod, Y. (2005). A morphogenetic model for the development of cortical convolutions. Cereb. Cortex 15, 1900-1913. doi: 10.1093/cercor/bhi068

Tomelleri, L., Jogia, J., Perlini, C., Bellani, M., Ferro, A., Rambaldelli, G., et al. (2009). Brain structural changes associated with chronicity and antipsychotic treatment in schizophrenia. Eur. Neuropsychopharmacol. 19(12), 835-840. doi: 10.1016/j.euroneuro.2009.07.007

Vanes, L.D., Mouchlianitis, E., Patel, K., Barry, E., Wong, K., Thomas, M., et al. (2019). Neural correlates of positive and negative symptoms through the illness course: an fMRI study in early psychosis and chronic schizophrenia. Sci. Rep. 9, 14444. doi: 10.1038/s41598-019- 51023-0

Vita, A., De Peri, L., Deste, G., Barlati, S., Sacchetti, E. (2015). The effect of antipsychotic treatment on cortical gray matter changes in schizophrenia: Does the class matter? A meta-analysis and meta-regression of longitudinal magnetic resonance imaging studies. Biol. Psychiatry 78, 403-412. doi: 10.1016/j.biopsych.2015.02.008

World Health Organization. (1993). The ICD-10 Classification of Mental and Behavioural Disorders: Diagnostic Criteria for Research. Geneva: World Health Organization.

Yoon, Y.B., Yun, J.Y., Jung, W.H., Cho, K.I., Kim, S.N., Lee, T.Y., et al. (2015). Altered Fronto-Temporal Functional Connectivity in Individuals at Ultra-High-Risk of Developing Psychosis. PLoS One 10, e0135347. doi: 10.1371/journal.pone.0135347

Zilles, K., Palomero-Gallagher, N., Amunts, K. (2013). Development of cortical folding during evolution and ontogeny. Trends Neurosci. 36, 275-284. doi: 10.1016/j.tins.2013.01.006

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る