リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Event-related potentials evoked by skin puncture reflect activation of Aβ fibers: comparison with intraepidermal and transcutaneous electrical stimulations」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Event-related potentials evoked by skin puncture reflect activation of Aβ fibers: comparison with intraepidermal and transcutaneous electrical stimulations

城下 由衣 広島大学

2022.03.23

概要

Blood sampling is an essential medical procedure, yet the pain sensation associated with
skin puncture is often a problem. In particular, neonates in neonatal intensive care units
frequently experience blood sampling by skin puncture (Cruz, Fernandes & Oliveira, 2016),
and this frequent exposure to unanticipated external nociceptive stimuli has been suggested
to adversely affect the neuronal developmental process (Ranger & Grunau, 2014; Walker,
2019). Repeated painful procedures in neonates reduce the volume of white and gray matter
(Brummelte et al., 2012) and lead to behavioral abnormalities (Grunau et al., 2009; Vinall et
al., 2014); these adverse effects may last until adolescence (Nosarti et al., 2002; Nosarti et al.,
2008; Anderson & Doyle, 2003; Grunau, Whitfield & Fay, 2004; Schmidt et al., 2010; Loe et
al., 2011; Lax et al., 2013; Walker et al., 2018). Many researchers have attempted to relieve
the pain of skin puncture in the heel in neonates (Pillai Riddell et al., 2015; Stevens et al.,
2017) using interventions such as pacifiers, holding, music, and a combination of these (Gao
et al., 2018; Peng et al., 2018; Perroteau et al., 2018; Uematsu & Sobue, 2019; Campbell-Yeo,
2019; Davari et al., 2019). However, some have suggested that the Premature Infant Pain
Profile (Stevens et al., 1996; Gibbins et al., 2014) used to evaluate neonatal pain in these
studies has issues in terms of pain detection sensitivity (Hartley et al., 2015). Indeed, an
index that can be applied to objectively and quantitatively evaluate pain in neonates has
yet to be established.
Recently, event-related potentials (ERPs) evoked by nociceptive stimuli have received
increasing attention as a pain index in neonates (Slater et al., 2010a; Slater et al., 2010b;
Moultrie, Slater & Hartley, 2017; Shiroshita et al., 2020). However, this index leaves doubts
about the research results. In neonates, the ERP evoked by skin puncture in the heel (heel
lance) consists of N2P2 and N3P3 waves, and the N3P3 is considered an ERP specific to
heel lance (Shiroshita et al., 2021). The N3P3 latency has been reported as 420 ms (Slater
et al., 2010b), 383 ms (Verriotis et al., 2016), and 403 ms (Fabrizi et al., 2016) for N3, and
as 560 ms (Slater et al., 2010b), 554 ms (Verriotis et al., 2016), and 538 ms (Fabrizi et al.,
2016) for P3. However, studies have yet to be conducted that investigate the response
to intraepidermal electrical stimulation (IES) or laser stimulation in neonates. ...

参考文献

Altmann CF, Nakata H, Noguchi Y, Inui K, Hoshiyama M, Kaneoke Y, Kakigi R. 2008.

Temporal dynamics of adaptation to natural sounds in the human auditory cortex.

Cerebral Cortex 18:1350–1360 DOI 10.1093/cercor/bhm166.

Anderson P, Doyle LW. 2003. Neurobehavioral outcomes of school-age children born

extremely low birth weight or very preterm in the 1990s. Journal of the American

Medical Association 289:3264–3272 DOI 10.1001/jama.289.24.3264.

Atcherson SR, Gould HJ, Pousson MA, Prout TM. 2006. Long-term stability of N1

sources using low-resolution electromagnetic tomography. Brain Topography

19:11–20 DOI 10.1007/s10548-006-0008-8.

Baumgärtner U, Greffrath W, Treede RD. 2012. Contact heat and cold, mechanical,

electrical and chemical stimuli to elicit small fiber-evoked potentials: merits and

limitations for basic science and clinical use. Neurophysiologie Clinique 42:267–280

DOI 10.1016/j.neucli.2012.06.002.

Baumgärtner U, Tiede W, Treede RD, Craig AD. 2006. Laser-evoked potentials are

graded and somatotopically organized anteroposteriorly in the operculoinsular cortex of anesthetized monkeys. Journal of Neurophysiology 96:2802–2808

DOI 10.1152/jn.00512.2006.

Shiroshita et al. (2021), PeerJ, DOI 10.7717/peerj.12250

15/21

Beydoun A, Morrow TJ, Shen JF, Casey KL. 1993. Variability of laser-evoked potentials: attention, arousal and lateralized differences. Electroencephalography and Clinical Neurophysiology/ Evoked Potentials Section 88(1):173–181

DOI 10.1016/0168-5597(93)90002-7.

Brett-Green BA, Miller LJ, Schoen SA, Nielsen DM. 2010. An exploratory event-related

potential study of multisensory integration in sensory over-responsive children.

Brain Research 1321:67–77 DOI 10.1016/j.brainres.2010.01.043.

Bromm B, Jahnke MT, Treede RD. 1984. Responses of human cutaneous afferents

to CO2 laser stimuli causing pain. Experimental Brain Research 55:158–166

DOI 10.1007/BF00240510.

Brummelte S, Grunau RE, Chau V, Poskitt KJ, Brant R, Vinall J, Gover A, Synnes AR,

Miller SP. 2012. Procedural pain and brain development in premature newborns.

Annals of Neurology 71:385–396 DOI 10.1002/ana.22267.

Campbell-Yeo M. 2019. Combining facilitated tucking and non-nutritive sucking

appears to promote greater regulation for preterm neonates following heel lance,

but does not provide effective pain relief. Evidence Based Nursing 22:19–19

DOI 10.1136/ebnurs-2018-102984.

Carrillo-de-la-Peña M, Cadaveira F. 2000. The effect of motivational instructions on

P300 amplitude. Neurophysiologie Clinique/Clinical Neurophysiology 30(1):232–239

DOI 10.1016/s0987-7053(00)00220-3.

Cruz MD, Fernandes AM, Oliveira CR. 2016. Epidemiology of painful procedures

performed in neonates: a systematic review of observational studies. European

Journal of Pain 20:489–498 DOI 10.1002/ejp.757.

Davari S, Borimnejad L, Khosravi S, Haghani H. 2019. The effect of the facilitated

tucking position on pain intensity during heel stick blood sampling in premature

infants: a surprising result. The Journal of Maternal-Fetal & Neonatal Medicine

32:3427–3430 DOI 10.1080/14767058.2018.1465550.

Dionne JK, Legon W, Staines WR. 2013. Crossmodal influences on early somatosensory

processing: Interaction of vision, touch, and task-relevance. Experimental Brain

Research 226:503–512 DOI 10.1007/s00221-013-3462-z.

Egekvist B, Arendt-Nielsen . 1999. Pain and mechanical injury of human skin following

needle insertions. European Journal of Pain 3:41–49 DOI 10.1053/eujp.1998.0099.

Fabrizi L, Verriotis M, Williams G, Lee A, Meek J, Olhede S, Fitzgerald M. 2016.

Encoding of mechanical nociception differs in the adult and infant brain. Scientific

Reports 6:2–10 DOI 10.1038/srep28642.

Fabrizi L, Williams G, Lee A, Meek J, Slater R, Olhede S, Fitzgerald M. 2013. Cortical

activity evoked by an acute painful tissue-damaging stimulus in healthy adult

volunteers. Journal of Neurophysiology 109:2393–2403 DOI 10.1152/jn.00990.2012.

Foxe JJ, Morocz IA, Murray MM, Higgins BA, Javitt DC, Schroeder CE. 2000.

Multisensory auditory-somatosensory interactions in early cortical processing

revealed by high-density electrical mapping. Cognitive Brain Research 10(1):77–83

DOI 10.1016/S0926-6410(00)00024-0.

Shiroshita et al. (2021), PeerJ, DOI 10.7717/peerj.12250

16/21

Foxe JJ, Wylie GR, Martinez A, Schroeder CE, Javitt DC, Guilfoyle D, Ritter W,

Murray MM. 2002. Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. Journal of Neurophysiology 88:540–543

DOI 10.1152/jn.2002.88.1.540.

Gao H, Li M, Gao H, Xu G, Li F, Zhou J, Zou Y, Jiang H. 2018. Effect of non-nutritive

sucking and sucrose alone and in combination for repeated procedural pain in

preterm infants: A randomized controlled trial. International Journal of Nursing

Studies 83:25–33 DOI 10.1016/j.ijnurstu.2018.04.006.

García-Larrea L, Peyron R, Laurent B, Mauguière F. 1997. Association and dissociation

between laser-evoked potentials and pain perception. Neuroreport 8:3785–93789

DOI 10.1097/00001756-199712010-00026.

Gibbins S, Stevens BJ, Yamada J, Dionne K, Campbell-Yeo M, Lee G, Caddell K,

Johnston C, Taddio A. 2014. Validation of the premature infant pain profile-revised

(PIPP-R). Early Human Development 90:189–193

DOI 10.1016/j.earlhumdev.2014.01.005.

Gobbelé R, Schürmann M, Forss N, Juottonen K, Buchner H, Hari R. 2003. Activation

of the human posterior parietal and temporoparietal cortices during audiotactile

interaction. NeuroImage 20(1):503–511 DOI 10.1016/S1053-8119(03)00312-4.

Gondan M, Röder B. 2006. A new method for detecting interactions between

the senses in event-related potentials. Brain Research 1073–1074:389–397

DOI 10.1016/j.brainres.2005.12.050.

Gondan M, Vorberg D, Greenlee MW. 2007. Modality shift effects mimic multisensory interactions: an event-related potential study. Experimental Brain Research

182:199–214 DOI 10.1007/s00221-007-0982-4.

Grunau RE, Whitfield MF, Fay TB. 2004. Psychosocial and academic characteristics

of extremely low birth weight (≤800 g) adolescents who are free of major impairment compared with term-born control subjects. Pediatrics 114:e725–732

DOI 10.1542/peds.2004-0932.

Grunau RE, Whitfield MF, Petrie-Thomas J, Synnes AR, Cepeda IL, Keidar A, Rogers

M, MacKay M, Hubber-Richard P, Johannesen D. 2009. Neonatal pain, parenting

stress and interaction, in relation to cognitive and motor development at 8 and 18

months in preterm infants. Pain 143:138–146 DOI 10.1016/j.pain.2009.02.014.

Hagiwara K, Perchet C, Frot M, Bastuji H, Garcia-Larrea L. 2018. Insular-limbic

dissociation to intra-epidermal electrical A δ activation: a comparative study

with thermo-nociceptive laser stimulation. European Journal of Neuroscience

48:3186–3198 DOI 10.1111/ejn.14146.

Hartley C, Goksan S, Poorun R, Brotherhood K, Mellado GS, Moultrie F, Rogers

R, Adams E, Slater R. 2015. The relationship between nociceptive brain activity,

spinal reflex withdrawal and behaviour in newborn infants. Scientific Reports 5:1–13

DOI 10.1038/srep12519.

Hird EJ, Jones AKP, Talmi D, El-Deredy W. 2018. A comparison between the neural

correlates of laser and electric pain stimulation and their modulation by expectation.

Journal of Neuroscience Methods 293:117–127 DOI 10.1016/j.jneumeth.2017.09.011.

Shiroshita et al. (2021), PeerJ, DOI 10.7717/peerj.12250

17/21

Iannetti GD, Zambreanu L, Cruccu G, Tracey I. 2005. Operculoinsular cortex encodes pain intensity at the earliest stages of cortical processing as indicated by

amplitude of laser-evoked potentials in humans. Neuroscience 131:199–208

DOI 10.1016/j.neuroscience.2004.10.035.

Inui K, Tran TD, Hoshiyama M, Kakigi R. 2002. Preferential stimulation of Aδ fibers by

intra-epidermal needle electrode in humans. Pain 96:247–252

DOI 10.1016/S0304-3959(01)00453-5.

Johnson KO. 2001. The roles and functions of cutaneous mechanoreceptors. Current

Opinion in Neurobiology 11:455–461 DOI 10.1016/S0959-4388(00)00234-8.

Kakigi R, Shibasaki H. 1984. Scalp topography of mechanically and electrically evoked

somatosensory potentials in man. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 59:44–56 DOI 10.1016/0168-5597(84)90019-4.

Kakigi R, Shibasaki H, Ikeda A. 1989. Pain-related somatosensory evoked potentials

following CO2 laser stimulation in man. Electroencephalography and Clinical Neurophysiology/ Evoked Potentials Section 74:139–146 DOI 10.1016/0168-5597(89)90019-1.

Kirimoto H, Tamaki H, Otsuru N, Yamashiro K, Onishi H, Nojima I, Oliviero A. 2018.

Transcranial static magnetic field stimulation over the primary motor cortex induces

plastic changes in cortical nociceptive processing. Frontiers in Human Neuroscience

12:1–10 DOI 10.3389/fnhum.2018.00063.

Knight RT, Hillyard SA, Woods DL, Neville HJ. 1980. The effects of frontal and

temporal-parietal lesions on the auditory evoked potential in man. Electroencephalography and Clinical Neurophysiology 50:112–124 DOI 10.1016/0013-4694(80)90328-4.

Kodaira M, Inui K, Kakigi R. 2014. Evaluation of nociceptive A δ- and C-fiber dysfunction with lidocaine using intraepidermal electrical stimulation. Clinical Neurophysiology 125:1870–1877 DOI 10.1016/j.clinph.2014.01.009.

Lam K, Kakigi R, Kaneoke Y, Naka D, Maeda K, Suzuki H. 1999. Effects of visual and

auditory stimulation on somatosensory evoked magnetic fields. Clinical Neurophysiology 110:295–304 DOI 10.1016/S0168-5597(98)00059-8.

Lax ID, Duerden EG, Lin SY, Mallar Chakravarty M, Donner EJ, Lerch JP, Taylor MJ.

2013. Neuroanatomical consequences of very preterm birth in middle childhood.

Brain Structure and Function 218:575–585 DOI 10.1007/s00429-012-0417-2.

Lee MC, Mouraux A, Iannetti GD. 2009. Characterizing the cortical activity through

which pain emerges from nociception. Journal of Neuroscience 29:7909–7916

DOI 10.1523/JNEUROSCI.0014-09.2009.

Lefaucheur JP, Ahdab R, Ayache SS, Lefaucheur-Ménard I, Rouie D, Tebbal D, Neves

DO, De Andrade DCiampi. 2012. Pain-related evoked potentials: A comparative study between electrical stimulation using a concentric planar electrode

and laser stimulation using a CO2 laser. Neurophysiologie Clinique 42:199–206

DOI 10.1016/j.neucli.2011.12.003.

Leonardi L, Viganò M, Nicolucci A. 2019. Penetration force and cannula sliding profiles

of different pen needles: the PICASSO study. Medical Devices: Evidence and Research

12:311–317 DOI 10.2147/MDER.S218983.

Shiroshita et al. (2021), PeerJ, DOI 10.7717/peerj.12250

18/21

Loe IM, Lee ES, Luna B, Feldman HM. 2011. Behavior problems of 9-16 year old preterm

children: Biological, sociodemographic, and intellectual contributions. Early Human

Development 87:247–252 DOI 10.1016/j.earlhumdev.2011.01.023.

Lütkenhöner B, Lammertmann C, Simões C, Hari R. 2002. Magnetoencephalographic

correlates of audiotactile interaction. NeuroImage 15:509–522

DOI 10.1006/nimg.2001.0991.

Macefield VG. 2005. Proceedings of the symposium from osseointegration to osseoperception: the functional translation physiological characteristics of low-threshold

mechanoreceptors in joints muscle and skin. Clinical and Experimental Pharmacology

and Physiology 32:135–144 DOI 10.1111/j.1440-1681.2005.04143.x.

Martin BA, Tremblay KL, Korczak P. 2008. Speech evoked potentials: from the laboratory to the clinic. Ear and Hearing 29:285–313 DOI 10.1097/AUD.0b013e3181662c0e.

Meyer CH, Kaymak H, Liu Z, Saxena S, Rodrigues EB. 2014. Geometry, penetration

force, and cutting profile of different 23-gauge trocars systems for pars plana

vitrectomy. Retina 34:2290–2299 DOI 10.1097/IAE.0000000000000221.

Moultrie F, Slater R, Hartley C. 2017. Improving the treatment of infant pain. Current

Opinion in Supportive and Palliative Care 11:112–117

DOI 10.1097/SPC.0000000000000270.

Mouraux A, Iannetti GD, Plaghki L. 2010. Low intensity intra-epidermal electrical stimulation can activate Aδ-nociceptors selectively. Pain 150:199–207

DOI 10.1016/j.pain.2010.04.026.

Mouraux A, Marot E, Legrain V. 2014. Short trains of intra-epidermal electrical

stimulation to elicit reliable behavioral and electrophysiological responses to the

selective activation of nociceptors in humans. Neuroscience Letters 561:69–73

DOI 10.1016/j.neulet.2013.12.017.

Munger BL, Halata Z. 1983. The sensory innervation of primate facial skin, I. Hairy skin.

Brain Research Reviews 5(1):45–80 DOI 10.1016/0165-0173(83)90021-8.

Näätänen R, Picton T. 1987. The N1 wave of the human electric and magnetic response

to sound: a review and an analysis of the component structure. Psychophysiology

24:375–425 DOI 10.1111/j.1469-8986.1987.tb00311.x.

Nosarti C, Al-Asady MHS, Frangou S, Stewart AL, Rifkin L, Murray RM. 2002.

Adolescents who were born very preterm have decreased brain volumes. Brain

125:1616–1623 DOI 10.1093/brain/awf157.

Nosarti C, Giouroukou E, Healy E, Rifkin L, Walshe M, Reichenberg A, Chitnis X,

Williams SCR, Murray RM. 2008. Grey and white matter distribution in very

preterm adolescents mediates neurodevelopmental outcome. Brain 131:205–217

DOI 10.1093/brain/awm282.

Novotny GE, Gommert-Novotny E. 1988. Intraepidermal nerves in human digital skin.

Cell and Tissue Research 254:111–117 DOI 10.1007/BF00220023.

Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA. 2004. Amplitudes of laser

evoked potential recorded from primary somatosensory, parasylvian and

medial frontal cortex are graded with stimulus intensity. Pain 110:318–328

DOI 10.1016/j.pain.2004.04.009.

Shiroshita et al. (2021), PeerJ, DOI 10.7717/peerj.12250

19/21

Okamoto H, Stracke H, Wolters CH, Schmael F, Pantev C. 2007. Attention improves

population-level frequency tuning in human auditory cortex. Journal of Neuroscience

27:10383–10390 DOI 10.1523/JNEUROSCI.2963-07.2007.

Omori S, Isose S, Misawa S, Watanabe K, Sekiguchi Y, Shibuya K, Beppu M, Amino

H, Kuwabara S. 2017. Pain-related evoked potentials after intraepidermal electrical

stimulation to Aδ and C fibers in patients with neuropathic pain. Neuroscience

Research 121:43–48 DOI 10.1016/j.neures.2017.03.007.

Otsuru N, Inui K, Yamashiro K, Miyazaki T, Takeshima Y, Kakigi R. 2010. Assessing Aδ

fiber function with lidocaine using intraepidermal electrical stimulation. The Journal

of Pain 11:621–627 DOI 10.1016/j.jpain.2009.10.001.

Peng HF, Yin T, Yang L, Wang C, Chang YC, Jeng MJ, Liaw JJ. 2018. Non-nutritive

sucking, oral breast milk, and facilitated tucking relieve preterm infant pain during

heel-stick procedures: a prospective, randomized controlled trial. International

Journal of Nursing Studies 77:162–170 DOI 10.1016/j.ijnurstu.2017.10.001.

Perroteau A, Nanquette MC, Rousseau A, Renolleau S, Bérard L, Mitanchez D,

Leblanc J. 2018. Efficacy of facilitated tucking combined with non-nutritive

sucking on very preterm infants’ pain during the heel-stick procedure: a randomized controlled trial. International Journal of Nursing Studies 86:29–35

DOI 10.1016/j.ijnurstu.2018.06.007.

Pillai Riddell R, Racine N, Gennis H, Turcotte K, Uman L, Horton R, AholaKohut S,

Hillgrove Stuart J, Stevens B, Lisi D. 2015. Non-pharmacological management of

infant and young child procedural pain. Cochrane Database of Systematic Reviews

DOI 10.1002/14651858.CD006275.

Ranger M, Grunau RE. 2014. Early repetitive pain in preterm infants in relation to the

developing brain. Pain Management 4:57–67 DOI 10.2217/pmt.13.61.

Rustamov N, Tessier J, Provencher B, Lehmann A, Piché M. 2016. Inhibitory effects

of heterotopic noxious counter-stimulation on perception and brain activity

related to Aβ-fibre activation. European Journal of Neuroscience 44:1771–1778

DOI 10.1111/ejn.13258.

Sakamoto K, Nakata H, Kakigi R. 2009. The effect of mastication on human cognitive processing: A study using event-related potentials. Clinical Neurophysiology

120:41–50 DOI 10.1016/j.clinph.2008.10.001.

Schmidt LA, Miskovic V, Boyle M, Saigal S. 2010. Frontal electroencephalogram

asymmetry, salivary cortisol, and internalizing behavior problems in young adults

who were born at extremely low birth weight. Child Development 81:183–199

DOI 10.1111/j.1467-8624.2009.01388.x.

Shiroshita Y, Kirimoto H, Nakagawa K, Uematsu H, Sobue I. 2020. Evoked potential as

a pain evaluation index for neonatal procedural pain. International Journal of Nursing

& Clinical Practices 7:323 DOI 10.15344/2394-4978/2020/323.

Shiroshita Y, Kirimoto H, Ozawa M, Watanabe T, Uematsu H, Yunoki K, Sobue I.

2021. Can event-related potentials evoked by heel lance assess pain processing in

neonates? A systematic review. Children 8:58 DOI 10.3390/children8020058.

Shiroshita et al. (2021), PeerJ, DOI 10.7717/peerj.12250

20/21

Slater R, Cornelissen L, Fabrizi L, Patten D, Yoxen J, Worley A, Boyd S, Meek J,

Fitzgerald M. 2010a. Oral sucrose as an analgesic drug for procedural pain in

newborn infants: a randomised controlled trial. The Lancet 376:1225–1232

DOI 10.1016/S0140-6736(10)61303-7.

Slater R, Worley A, Fabrizi L, Roberts S, Meek J, Boyd S, Fitzgerald M. 2010b. Evoked

potentials generated by noxious stimulation in the human infant brain. European

Journal of Pain 14:321–326 DOI 10.1016/j.ejpain.2009.05.005.

Sperdin HF, Cappe C, Foxe JJ, Murray MM. 2009. Interactions impact reaction time

speed. Frontiers in Integrative Neuroscience 3:1–10 DOI 10.3389/neuro.07.

Stevens B, Johnston C, Petryshen P, Taddio A. 1996. Premature infant pain profile: development and initial validation. The Clinical Journal of Pain 12:13–22

DOI 10.1097/00002508-199603000-00004.

Stevens B, Yamada J, Ohlsson A, Haliburton S, Shorkey A. 2017. Sucrose for analgesia

in newborn infants undergoing painful procedures. Cochrane Database of Systematice

Reviews DOI 10.1002/14651858.CD001069.

Torquati K, Pizzella V, Della Penna S, Franciotti R, Babiloni C, Romani GL, Rossini

PM. 2003. Gating effects of simultaneous peripheral electrical stimulations on

human secondary somatosensory cortex: a whole-head MEG study. NeuroImage

20:1704–1713 DOI 10.1016/S1053-8119(03)00439-7.

Touge T, Gonzalez D, Wu J, Deguchi K, Tsukaguchi M, Shimamura M, Ikeda K,

Kuriyama S. 2008. The interaction between somatosensory and auditory cognitive

processing assessed with event-related potentials. Journal of Clinical Neurophysiology

25:90–97 DOI 10.1097/WNP.0b013e31816a8ffa.

Uematsu H, Sobue I. 2019. Effect of music (Brahms lullaby) and non-nutritive sucking

on heel lance in preterm infants: a randomized controlled crossover trial. Paediatrics

and Child Health 24:E33–E39 DOI 10.1093/pch/pxy072.

Verriotis M, Fabrizi L, Lee A, Cooper RJ, Fitzgerald M, Meek J. 2016. Mapping cortical

responses to somatosensory stimuli in human infants with simultaneous nearinfrared spectroscopy and event-related potential recording. ENeuro 3:663–673

DOI 10.1523/ENEURO.0026-16.2016.

Vinall J, Miller SP, Bjornson BH, Fitzpatrick KPV, Poskitt KJ, Brant R, Synnes AR,

Cepeda IL, Grunau RE. 2014. Invasive procedures in preterm children: brain and

cognitive development at school age. Pediatrics 133:412–421

DOI 10.1542/peds.2013-1863.

Walker SM. 2019. Long-term effects of neonatal pain. Seminars in Fetal and Neonatal

Medicine 24:101005 DOI 10.1016/j.siny.2019.04.005.

Walker SM, Melbourne A, O’Reilly H, Beckmann J, Eaton-Rosen Z, Ourselin S, Marlow

N. 2018. Somatosensory function and pain in extremely preterm young adults from

the UK EPICure cohort: sex-dependent differences and impact of neonatal surgery.

British Journal of Anaesthesia 121:623–635 DOI 10.1016/j.bja.2018.03.035.

Wolpaw JR, Penry JK. 1975. A temporal component of the auditory evoked response. Electroencephalography and Clinical Neurophysiology 39:609–620

DOI 10.1016/0013-4694(75)90073-5.

Shiroshita et al. (2021), PeerJ, DOI 10.7717/peerj.12250

21/21

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る