リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Association of CRP genetic variation with symptomatology, cognitive function, and circulating proinflammatory markers in civilian women with PTSD」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Association of CRP genetic variation with symptomatology, cognitive function, and circulating proinflammatory markers in civilian women with PTSD

大塚 豪士 山梨大学 DOI:info:doi/10.34429/00005018

2021.03.23

概要

(Purpose)
Posttraumatic stress disorder (PTSD) has been associated with increased inflammation. C-reactive protein (CRP) is a marker of systemic inflammation, and recently, single nucleotide polymorphisms (SNPs) in the CRP gene have been associated with increased blood CRP protein levels and illness severity in PTSD patients. However, the mechanism by which the CRP SNPs are involved in PTSD remains unclear. Here we investigated the association of CRP genetic variation with blood proinflammatory protein levels, symptomatology, and cognitive function, and further explored the moderating effect of childhood maltreatment history, in adult patients with PTSD.

(Methods)
Fifty-seven Japanese civilian women with PTSD and 73 healthy control women were enrolled. Three SNPs in the CRP gene, rs2794520, rs1130864, and rs3093059, were genotyped, and analyses focused on rs2794520 (T/C). Serum levels of high-sensitivity CRP (hsCRP), high-sensitivity tumor necrosis factor-α (hsTNF-α), and interleukin-6 were measured. PTSD symptoms were evaluated by the Posttraumatic Diagnostic Scale. Cognitive function was assessed by the Repeatable Battery for the Assessment of Neuropsychological Status. Childhood maltreatment history was assessed by the Childhood Trauma Questionnaire.

(Results)
Patients with the rs2794520 CC/CT genotype, compared to those with TT genotype, showed significantly higher levels of hsCRP (p=0.009) and hsTNF-α (p=0.001), more severe PTSD symptoms (p=0.036), and poorer cognitive function (p=0.018). A two-way analysis of variance revealed a significant genotype-by-maltreatment interaction for more severe PTSD avoidance symptom (p=0.012).

(Discussion)
Our finding of the association of CRP genetic variation with higher blood CRP levels and more severe symptoms in Japanese female patients mostly triggered by interpersonal trauma is consistent with previous studies of PTSD patients among urban African American men and women and veterans with predominantly white men. These results suggest that CRP genetic variation may lead to more severe phenotype of PTSD by causing increased inflammation.

PTSD is associated with wide-ranging cognitive impairments. It is also shown that PTSD patients have hippocampal morphologic abnormalities and increased risk of developing dementia. Neurogenesis in the hippocampus is associated with cognitive function, and inflammation in the brain adversely affects neurogenesis and cognition. The present study is the first, to our knowledge, to show the association between CRP genetic variation and cognitive impairment in patients with PTSD. CRP was originally thought to be a peripheral proinflammatory marker, but it has recently been suggested that CRP may influence the central nervous system. Therefore, the CRP genetic variation can cause increased levels of proinflammatory molecules, thereby leading to neuroinflammation and cognitive dysfunction. Besides cognitive impairment, the more severe PTSD symptoms associated with the CRP polymorphism might also be caused by inflammation in the brain, given the evidence that inflammation can be causally involved in the emergence and maintenance of such symptoms. For instance, animal studies have shown that elevated inflammation impairs extinction of fear memory. In line with this, human studies have demonstrated that increased inflammation is associated with enhanced amygdala activation in response to threatening stimuli.

Effects of environmental factors can be modified by genetic factors, and it is widely accepted that complex gene-environment interactions are involved in the pathogenesis of PTSD. Among a wide variety of environmental factors, childhood maltreatment can be particularly relevant here, as it has been associated with both increased inflammation and risk for PTSD. Supporting this, we observed the significant interaction between rs2794520 genotype and childhood maltreatment severity for PTSD avoidance symptoms, demonstrating an example of gene-environment interaction involved in this disorder. While we are not aware of any previous studies reporting the interaction between CRP genetic variation and childhood maltreatment in PTSD, there are studies that show such interactions for SNPs of other key genes, such as FKBP5 and BDNF. The reason for the specific association with avoidance symptom observed here is not clear, but this may suggest that childhood maltreatment might magnify the CRP genetic effect on this aspect of symptomatology.

(Conclusion)
This study shows significant relationships of the CRP genetic variation with circulating proinflammatory markers, symptom severity, and cognitive dysfunction in a sample of Japanese women with PTSD. We further demonstrate the significant interaction between the CRP polymorphism and childhood maltreatment for more severe PTSD avoidance symptom. These findings may provide an insight into understanding the etiology of PTSD from the inflammatory perspective.

この論文で使われている画像

参考文献

Agorastos, A., Hauger, R.L., Barkauskas, D.A., Lerman, I.R., Moeller-Bertram, T., Snijders, C., Haji, U., Patel, P.M., Geracioti, T.D., Chrousos, G.P., Baker, D.G., 2019. Relations of combat stress and posttraumatic stress disorder to 24-h plasma and cerebrospinal fluid interleukin-6 levels and circadian rhythmicity. Psychoneuroendocrinology. 100, 237-245.

Agorastos, A., Hauger, R.L., Barkauskas, D.A., Moeller-Bertram, T., Clopton, P.L., Haji, U., Lohr, J.B., Geracioti, T.D., Jr., Patel, P.M., Chrousos, G.P., Baker, D.G., 2014a. Circadian rhythmicity, variability and correlation of interleukin-6 levels in plasma and cerebrospinal fluid of healthy men. Psychoneuroendocrinology. 44, 71-82.

Agorastos, A., Pittman, J.O., Angkaw, A.C., Nievergelt, C.M., Hansen, C.J., Aversa, L.H., Parisi, S.A., Barkauskas, D.A., Baker, D.G., 2014b. The cumulative effect of different childhood trauma types on self-reported symptoms of adult male depression and PTSD, substance abuse and health- related quality of life in a large active-duty military cohort. J. Psychiatr. Res. 58, 46-54.

Alam, M.J., Kitamura, T., Saitoh, Y., Ohkawa, N., Kondo, T., Inokuchi, K., 2018. Adult Neurogenesis Conserves Hippocampal Memory Capacity. J. Neurosci. 38, 6854-6863.

Barrett, J.C., Fry, B., Maller, J., Daly, M.J., 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 21, 263-265.

Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C.M., Mondelli, V., 2016. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-alpha. Mol. Psychiatry. 21, 642-649.

Bernstein, D.P., Fink, L., 1998. Childhood Trauma Questionnaire: A retrospective self-report manual. The Psychological Corporation, San Antonio, TX.

Bernstein, D.P., Stein, J.A., Newcomb, M.D., Walker, E., Pogge, D., Ahluvalia, T., Stokes, J., Handelsman, L., Medrano, M., Desmond, D., Zule, W., 2003. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse Negl. 27, 169-190.

Binder, E.B., Bradley, R.G., Liu, W., Epstein, M.P., Deveau, T.C., Mercer, K.B., Tang, Y., Gillespie, C.F., Heim, C.M., Nemeroff, C.B., Schwartz, A.C., Cubells, J.F., Ressler, K.J., 2008. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA. 299, 1291-1305.

Calabro, P., Willerson, J.T., Yeh, E.T., 2003. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation. 108, 1930-1932.

Chu, A.L., Stochl, J., Lewis, G., Zammit, S., Jones, P.B., Khandaker, G.M., 2019. Longitudinal association between inflammatory markers and specific symptoms of depression in a prospective birth cohort. Brain. Behav. Immun. 76, 74-81.

Chu, A.Y., Guilianini, F., Barratt, B.J., Nyberg, F., Chasman, D.I., Ridker, P.M., 2012. Pharmacogenetic determinants of statin-induced reductions in C-reactive protein. Circ. Cardiovasc. Genet. 5, 58-65.

Crawford, D.C., Sanders, C.L., Qin, X., Smith, J.D., Shephard, C., Wong, M., Witrak, L., Rieder, M.J., Nickerson, D.A., 2006. Genetic variation is associated with C-reactive protein levels in the Third National Health and Nutrition Examination Survey. Circulation. 114, 2458-2465.

de Maat, M.P., Bladbjerg, E.M., Hjelmborg, J., Bathum, L., Jespersen, J., Christensen, K., 2004. Genetic influence on inflammation variables in the elderly. Arterioscler. Thromb. Vasc. Biol. 24, 2168-2173.

Elwood, E., Lim, Z., Naveed, H., Galea, I., 2017. The effect of systemic inflammation on human brain barrier function. Brain. Behav. Immun. 62, 35-40.

Eraly, S.A., Nievergelt, C.M., Maihofer, A.X., Barkauskas, D.A., Biswas, N., Agorastos, A., O’Connor, D.T., Baker, D.G., Team, f.t.M.R.S., 2014. Assessment of Plasma C-Reactive Protein as a Biomarker of Posttraumatic Stress Disorder Risk. JAMA Psychiatry. 71, 423-431.

Foa, E.B., 1995. The posttraumatic diagnostic scale (PDS) manual. National Computer Systems, Minneapolis, MN. Hattori, Y., Matsumura, M., Kasai, K., 2003. Vascular smooth muscle cell activation by C-reactive protein. Cardiovasc. Res. 58, 186-195.

Hori, H., Kim, Y., 2019. Inflammation and post-traumatic stress disorder. Psychiatry Clin. Neurosci. 73, 143-153.

Imai, R., Hori, H., Itoh, M., Lin, M., Niwa, M., Ino, K., Ogawa, S., Ishida, M., Sekiguchi, A., Matsui, M., Kunugi, H., Akechi, T., Kamo, T., Kim, Y., 2018. Inflammatory markers and their possible effects on cognitive function in women with posttraumatic stress disorder. J. Psychiatr. Res. 102, 192-200.

Inagaki, T.K., Muscatell, K.A., Irwin, M.R., Cole, S.W., Eisenberger, N.I., 2012. Inflammation selectively enhances amygdala activity to socially threatening images. Neuroimage. 59, 3222- 3226.

Jin, M.J., Jeon, H., Hyun, M.H., Lee, S.H., 2019. Influence of childhood trauma and brain-derived neurotrophic factor Val66Met polymorphism on posttraumatic stress symptoms and cortical thickness. Sci. Rep. 9, 6028.

Kathiresan, S., Larson, M.G., Vasan, R.S., Guo, C.Y., Gona, P., Keaney, J.F., Jr., Wilson, P.W., Newton-Cheh, C., Musone, S.L., Camargo, A.L., Drake, J.A., Levy, D., O'Donnell, C.J., Hirschhorn, J.N., Benjamin, E.J., 2006. Contribution of clinical correlates and 13 C-reactive protein gene polymorphisms to interindividual variability in serum C-reactive protein level. Circulation. 113, 1415-1423.

Kessler, R.C., Sonnega, A., Bromet, E., Hughes, M., Nelson, C.B., 1995. Posttraumatic stress disorder in the National Comorbidity Survey. Arch. Gen. Psychiatry. 52, 1048-1060.

Koenen, K.C., Nugent, N.R., Amstadter, A.B., 2008. Gene-environment interaction in posttraumatic stress disorder: review, strategy and new directions for future research. Eur. Arch. Psychiatry Clin. Neurosci. 258, 82-96.

Koenen, K.C., Ratanatharathorn, A., Ng, L., McLaughlin, K.A., Bromet, E.J., Stein, D.J., Karam, E.G., Meron Ruscio, A., Benjet, C., Scott, K., Atwoli, L., Petukhova, M., Lim, C.C.W., Aguilar- Gaxiola, S., Al-Hamzawi, A., Alonso, J., Bunting, B., Ciutan, M., de Girolamo, G., Degenhardt, L., Gureje, O., Haro, J.M., Huang, Y., Kawakami, N., Lee, S., Navarro-Mateu, F., Pennell, B.E., Piazza, M., Sampson, N., Ten Have, M., Torres, Y., Viana, M.C., Williams, D., Xavier, M., Kessler, R.C., 2017. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol. Med. 47, 2260-2274.

Lakoski, S.G., Cushman, M., Criqui, M., Rundek, T., Blumenthal, R.S., D'Agostino, R.B., Jr., Herrington, D.M., 2006. Gender and C-reactive protein: data from the Multiethnic Study of Atherosclerosis (MESA) cohort. Am. Heart J. 152, 593-598.

Li, C.I., Li, T.C., Liao, L.N., Liu, C.S., Yang, C.W., Lin, C.H., Hsiao, J.H., Meng, N.H., Lin, W.Y., Wu, F.Y., Lin, C.C., 2016. Joint effect of gene-physical activity and the interactions among CRP, TNF-alpha, and LTA polymorphisms on serum CRP, TNF-alpha levels, and handgrip strength in community-dwelling elders in Taiwan - TCHS-E. Age (Dordr). 38, 46.

Lindqvist, D., Dhabhar, F.S., Mellon, S.H., Yehuda, R., Grenon, S.M., Flory, J.D., Bierer, L.M., Abu-Amara, D., Coy, M., Makotkine, I., Reus, V.I., Bersani, F.S., Marmar, C.R., Wolkowitz, O.M., 2017. Increased pro-inflammatory milieu in combat related PTSD - A new cohort replication study. Brain. Behav. Immun. 59, 260-264.

Liu, Z.Y., Wang, Z.D., Li, L.Z., Chu, X.F., Zhu, Y.S., Shi, J.M., Xie, X.J., Jin, L., Wang, Y., Wang, X.F., 2016. Association of CRP gene polymorphisms with CRP levels, frailty and co-morbidity in an elderly Chinese population: results from RuLAS. Age Ageing. 45, 360-365.

Logue, M.W., van Rooij, S.J.H., Dennis, E.L., Davis, S.L., Hayes, J.P., Stevens, J.S., Densmore, M., Haswell, C.C., Ipser, J., Koch, S.B.J., Korgaonkar, M., Lebois, L.A.M., Peverill, M., Baker, J.T., Boedhoe, P.S.W., Frijling, J.L., Gruber, S.A., Harpaz-Rotem, I., Jahanshad, N., Koopowitz, S., Levy, I., Nawijn, L., O'Connor, L., Olff, M., Salat, D.H., Sheridan, M.A., Spielberg, J.M., van Zuiden, M., Winternitz, S.R., Wolff, J.D., Wolf, E.J., Wang, X., Wrocklage, K., Abdallah, C.G., Bryant, R.A., Geuze, E., Jovanovic, T., Kaufman, M.L., King, A.P., Krystal, J.H., Lagopoulos, J., Bennett, M., Lanius, R., Liberzon, I., McGlinchey, R.E., McLaughlin, K.A., Milberg, W.P., Miller, M.W., Ressler, K.J., Veltman, D.J., Stein, D.J., Thomaes, K., Thompson, P.M., Morey, R.A., 2018. Smaller Hippocampal Volume in Posttraumatic Stress Disorder: A Multisite ENIGMA-PGC Study: Subcortical Volumetry Results From Posttraumatic Stress Disorder Consortia. Biol. Psychiatry. 83, 244-253.

Machiela, M.J., Chanock, S.J., 2018. LDassoc: an online tool for interactively exploring genome-wide association study results and prioritizing variants for functional investigation. Bioinformatics. 34, 887-889.

Matsui, M., Kasai, Y., Nagasaki, M., 2010. Reliability and validity of the Japanese version of the Repeatable Battery for the Assessment of Neuropsychological Status. Toyama Med. J. 21, 31-36.

Michopoulos, V., Powers, A., Gillespie, C.F., Ressler, K.J., Jovanovic, T., 2017. Inflammation in Fear- and Anxiety-Based Disorders: PTSD, GAD, and Beyond. Neuropsychopharmacology. 42, 254-270.

Michopoulos, V., Rothbaum, A.O., Jovanovic, T., Almli, L.M., Bradley, B., Rothbaum, B.O., Gillespie, C.F., Ressler, K.J., 2015. Association of CRP genetic variation and CRP level with elevated PTSD symptoms and physiological responses in a civilian population with high levels of trauma. Am. J. Psychiatry. 172, 353-362.

Miller, D.T., Zee, R.Y., Suk Danik, J., Kozlowski, P., Chasman, D.I., Lazarus, R., Cook, N.R., Ridker, P.M., Kwiatkowski, D.J., 2005. Association of common CRP gene variants with CRP levels and cardiovascular events. Ann. Hum. Genet. 69, 623-638.

Miller, M.W., Maniates, H., Wolf, E.J., Logue, M.W., Schichman, S.A., Stone, A., Milberg, W., McGlinchey, R., 2018. CRP polymorphisms and DNA methylation of the AIM2 gene influence associations between trauma exposure, PTSD, and C-reactive protein. Brain. Behav. Immun. 67, 194-202.

Muhie, S., Gautam, A., Chakraborty, N., Hoke, A., Meyerhoff, J., Hammamieh, R., Jett, M., 2017. Molecular indicators of stress-induced neuroinflammation in a mouse model simulating features of post-traumatic stress disorder. Transl Psychiatry. 7, e1135.

Nagae, N., Hirohata, S., Shimura, Y., Yamada, S., Foa, E., Nedate, K., Kim, Y., 2007. Development of the Japanese version of the Posttraumatic Diagnostic Scale: ascertaining its reliability and validity among university students. Japanese J. Trauma. Stress. 5, 51-56.

Narita-Ohtaki, R., Hori, H., Itoh, M., Lin, M., Niwa, M., Ino, K., Imai, R., Ogawa, S., Sekiguchi, A., Matsui, M., Kunugi, H., Kamo, T., Kim, Y., 2018. Cognitive function in Japanese women with posttraumatic stress disorder: Association with exercise habits. J. Affect. Disord. 236, 306-312.

Ney, L.J., Gogos, A., Ken Hsu, C.M., Felmingham, K.L., 2019. An alternative theory for hormone effects on sex differences in PTSD: The role of heightened sex hormones during trauma. Psychoneuroendocrinology. 109, 104416.

O'Donovan, A., Ahmadian, A.J., Neylan, T.C., Pacult, M.A., Edmondson, D., Cohen, B.E., 2017. Current posttraumatic stress disorder and exaggerated threat sensitivity associated with elevated inflammation in the Mind Your Heart Study. Brain. Behav. Immun. 60, 198-205.

Okajima, I., Nakajima, S., Kobayashi, M., Inoue, Y., 2013. Development and validation of the Japanese version of the Athens Insomnia Scale. Psychiatry Clin. Neurosci. 67, 420-425.

Pankow, J.S., Folsom, A.R., Cushman, M., Borecki, I.B., Hopkins, P.N., Eckfeldt, J.H., Tracy, R.P., 2001. Familial and genetic determinants of systemic markers of inflammation: the NHLBI family heart study. Atherosclerosis. 154, 681-689.

Passos, I.C., Vasconcelos-Moreno, M.P., Costa, L.G., Kunz, M., Brietzke, E., Quevedo, J., Salum, G., Magalhaes, P.V., Kapczinski, F., Kauer-Sant'Anna, M., 2015. Inflammatory markers in post- traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry. 2, 1002-1012.

Randolph, C., Tierney, M.C., Mohr, E., Chase, T.N., 1998. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): preliminary clinical validity. J. Clin. Exp. Neuropsychol. 20, 310-319.

Ryan, S.M., Nolan, Y.M., 2016. Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate? Neurosci. Biobehav. Rev. 61, 121-131.

Sartor, C.E., McCutcheon, V.V., Pommer, N.E., Nelson, E.C., Grant, J.D., Duncan, A.E., Waldron, M., Bucholz, K.K., Madden, P.A., Heath, A.C., 2011. Common genetic and environmental contributions to post-traumatic stress disorder and alcohol dependence in young women. Psychol. Med. 41, 1497-1505.

Scott, J.C., Matt, G.E., Wrocklage, K.M., Crnich, C., Jordan, J., Southwick, S.M., Krystal, J.H., Schweinsburg, B.C., 2015. A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder. Psychol. Bull. 141, 105-140.

Scott, K.M., Smith, D.R., Ellis, P.M., 2010. Prospectively ascertained child maltreatment and its association with DSM-IV mental disorders in young adults. Arch. Gen. Psychiatry. 67, 712-719.

Sheehan, D.V., Lecrubier, Y., Sheehan, K.H., Amorim, P., Janavs, J., Weiller, E., Hergueta, T., Baker, R., Dunbar, G.C., 1998. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry. 59 Suppl 20, 22-33;quiz 34-57.

Slopen, N., Kubzansky, L.D., McLaughlin, K.A., Koenen, K.C., 2013. Childhood adversity and inflammatory processes in youth: a prospective study. Psychoneuroendocrinology. 38, 188-200.

Soldatos, C.R., Dikeos, D.G., Paparrigopoulos, T.J., 2000. Athens Insomnia Scale: validation of an instrument based on ICD-10 criteria. J. Psychosom. Res. 48, 555-560.

Sproston, N.R., Ashworth, J.J., 2018. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 9, 754.

Stein, M.B., Jang, K.L., Taylor, S., Vernon, P.A., Livesley, W.J., 2002. Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: a twin study. Am. J. Psychiatry. 159, 1675-1681.

Strang, F., Scheichl, A., Chen, Y.C., Wang, X., Htun, N.M., Bassler, N., Eisenhardt, S.U., Habersberger, J., Peter, K., 2012. Amyloid plaques dissociate pentameric to monomeric C- reactive protein: a novel pathomechanism driving cortical inflammation in Alzheimer's disease? Brain Pathol. 22, 337-346.

Swartz, J.R., Prather, A.A., Hariri, A.R., 2017. Threat-related amygdala activity is associated with peripheral CRP concentrations in men but not women. Psychoneuroendocrinology. 78, 93-96.

True, W.R., Rice, J., Eisen, S.A., Heath, A.C., Goldberg, J., Lyons, M.J., Nowak, J., 1993. A twin study of genetic and environmental contributions to liability for posttraumatic stress symptoms. Arch. Gen. Psychiatry. 50, 257-264.

Wersching, H., Duning, T., Lohmann, H., Mohammadi, S., Stehling, C., Fobker, M., Conty, M., Minnerup, J., Ringelstein, E.B., Berger, K., Deppe, M., Knecht, S., 2010. Serum C-reactive protein is linked to cerebral microstructural integrity and cognitive function. Neurology. 74, 1022-1029.

Xie, P., Kranzler, H.R., Poling, J., Stein, M.B., Anton, R.F., Farrer, L.A., Gelernter, J., 2010. Interaction of FKBP5 with childhood adversity on risk for post-traumatic stress disorder. Neuropsychopharmacology. 35, 1684-1692.

Yaffe, K., Vittinghoff, E., Lindquist, K., Barnes, D., Covinsky, K.E., Neylan, T., Kluse, M., Marmar, C., 2010. Posttraumatic stress disorder and risk of dementia among US veterans. Arch. Gen. Psychiatry. 67, 608-613.

Yamaguchi-Kabata, Y., Nariai, N., Kawai, Y., Sato, Y., Kojima, K., Tateno, M., Katsuoka, F., Yasuda, J., Yamamoto, M., Nagasaki, M., 2015. iJGVD: an integrative Japanese genome variation database based on whole-genome sequencing. Hum Genome Var. 2, 15050.

Yang, J., Fan, C., Pan, L., Xie, M., He, Q., Li, D., Wang, S., 2015. C-reactive protein plays a marginal role in cognitive decline: a systematic review and meta-analysis. Int. J. Geriatr. Psychiatry. 30, 156-165.

Young, M.B., Howell, L.L., Hopkins, L., Moshfegh, C., Yu, Z., Clubb, L., Seidenberg, J., Park, J., Swiercz, A.P., Marvar, P.J., 2018. A peripheral immune response to remembering trauma contributes to the maintenance of fear memory in mice. Psychoneuroendocrinology. 94, 143-151.

Yu, Z., Fukushima, H., Ono, C., Sakai, M., Kasahara, Y., Kikuchi, Y., Gunawansa, N., Takahashi, Y., Matsuoka, H., Kida, S., Tomita, H., 2017. Microglial production of TNF-alpha is a key element of sustained fear memory. Brain. Behav. Immun. 59, 313-321.

Zass, L.J., Hart, S.A., Seedat, S., Hemmings, S.M., Malan-Muller, S., 2017. Neuroinflammatory genes associated with post-traumatic stress disorder: implications for comorbidity. Psychiatr. Genet. 27, 1-16.

Zhang, D., Sun, M., Samols, D., Kushner, I., 1996. STAT3 participates in transcriptional activation of the C-reactive protein gene by interleukin-6. J. Biol. Chem. 271, 9503-9509.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る