リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Temperature Responsive Polysaccharide Derivative in Aqueous Solution : Amylose Ethyl Carbamates」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Temperature Responsive Polysaccharide Derivative in Aqueous Solution : Amylose Ethyl Carbamates

Kimura, Shunji 大阪大学

2020.06.12

概要

Partly substituted amylose ethylcarbamate (AEC) samples for which degree of substitution DS and weight-average molar mass Mw range between 0.21 – 1.95 and 40 – 130 kg mol−1 , respectively, were prepared from enzymatically synthesized amylose. The particle scattering function P(q) of the AEC samples in polar organic solvents and water showed that local helical structure is retained as in the case of amylose and fully substituted AEC. The AEC samples with DS < 1.3 were soluble in water, and furthermore, the lower critical solution temperature (LCST) type phase separation was found for the samples with 0.9 < DS < 1.3. The cloud point temperature Tcloud varied from 12 C to 41 C depending on DS, Mw, and the polymer mass concentration c. The Tcloud values determined as a function of c had a minimum at 10 – 100 mg mL−1 . The LCST tended to rise with lowering Mw and DS. Iodine test indicated that all watersoluble AEC samples formed complex with iodine while the absorption peak wavelength shifted blue with increasing DS. The local helical structure of AEC may form inclusion complex with hydrophobic molecules. AEC is possibly used for a novel capture material which can be separated from water by temperature elevation.

この論文で使われている画像

参考文献

1. Flory, P. J. Principles of Polymer Chemistry. Cornell University Press: Ithaca, N. Y. , 1953.

2. Yamato, M.; Akiyama, Y.; Kobayashi, J.; Yang, J.; Kikuchi, A.; Okano, T. Temperatureresponsive cell culture surfaces for regenerative medicine with cell sheet engineering. Prog. Polym. Sci. 2007, 32, 1123-1133.

3. Stuart, M. A.; Huck, W. T.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101-13.

4. Kuckling, D.; Doering, A.; Krahl, F.; Arndt, K. F. Stimuli-Responsive Polymer Systems. In Polymer Science: A Comprehensive Reference, Matyjaszewski, K.; Möller, M., Eds. Elsevier: Amsterdam, 2012; pp 377-413.

5. Nagase, K.; Yamato, M.; Kanazawa, H.; Okano, T. Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials 2018, 153, 27-48.

6. Ohya, Y. Temperature-responsive biodegradable injectable polymer systems with conveniently controllable properties. Polym. J. 2019, 51, 997-1005.

7. Heskins, M.; Guillet, J. E. Solution Properties of Poly(N-isopropylacrylamide). J. Macromol. Sci., Chem. 1968, 2, 1441-1455.

8. Fujishige, S.; Kubota, K.; Ando, I. Phase-Transition of Aqueous-Solutions of Poly(NIsopropylacrylamide) and Poly(N-Isopropylmethacrylamide). J. Phys. Chem. 1989, 93, 3311- 3313.

9. Tong, Z.; Zeng, F.; Zheng, X.; Sato, T. Inverse Molecular Weight Dependence of Cloud Points for Aqueous Poly(N-isopropylacrylamide) Solutions. Macromolecules 1999, 32, 4488- 4490.

10. Chiklis, C. K.; Grasshoff, J. M. Swelling of thin films. I. Acrylamide–Nisopropylacrylamide copolymers in water. J. Polym. Sci., Part A-2: Polym. Phys. 1970, 8, 1617- 1626.

11. Zhang, J.; Pelton, R. The surface tension of aqueous poly(N-isopropylacrylamide-coacrylamide). J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 2137-2143.

12. Hoffman, A. S.; Stayton, P. S.; Bulmus, V.; Chen, G. H.; Chen, J. P.; Cheung, C.; Chilkoti, A.; Ding, Z. L.; Dong, L. C.; Fong, R.; Lackey, C. A.; Long, C. J.; Miura, M.; Morris, J. E.; Murthy, N.; Nabeshima, Y.; Park, T. G.; Press, O. W.; Shimoboji, T.; Shoemaker, S.; Yang, H. J.; Monji, N.; Nowinski, R. C.; Cole, C. A.; Priest, J. H.; Harris, J. M.; Nakamae, K.; Nishino, T.; Miyata, T. Really smart bioconjugates of smart polymers and receptor proteins. J. Biomed. Mater. Res. 2000, 52, 577-586.

13. Shen, Z. Y.; Terao, K.; Maki, Y.; Dobashi, T.; Ma, G. H.; Yamamoto, T. Synthesis and phase behavior of aqueous poly(N-isopropylacrylamide-co-acrylamide), poly(Nisopropylacrylamide-co-N,N-dimethylacrylamide) and poly (N-isopropylacrylamide-co-2- hydroxyethyl methacrylate). Colloid. Polym. Sci. 2006, 284, 1001-1007.

14. Hashidzume, A.; Matsumoto, A.; Mori, T.; Shikata, T.; Sato, T. Phase behavior of aqueous solutions of copolymers of N,N'-diisopropylfumaramide and N-isopropylacrylamide: effect of the density of side chains. Langmuir 2012, 28, 5522-6.

15. Heymann, E. Studies on sol-gel transformations. I. The inverse sol-gel transformation of methylcellulose in water. Trans. Faraday Soc. 1935, 31, 0846-0863.

16. Morozova, S.; Schmidt, P. W.; Bates, F. S.; Lodge, T. P. Effect of Poly(ethylene glycol) Grafting Density on Methylcellulose Fibril Formation. Macromolecules 2018.

17. Schmidt, P. W.; Morozova, S.; Owens, P. M.; Adden, R.; Li, Y. F.; Bates, F. S.; Lodge, T. P. Molecular Weight Dependence of Methylcellulose Fibrillar Networks. Macromolecules 2018, 51, 7767-7775.

18. Ju, B.; Zhang, C.; Zhang, S. Thermoresponsive starch derivates with widely tuned LCSTs by introducing short oligo(ethylene glycol) spacers. Carbohydr. Polym. 2014, 108, 307-12.

19. Burchard, W. Thermodynamic Solution Properties of 3 Polymers Exhibiting Lower Critical Solution Temperature. Polymer 1969, 10, 467-475.

20. Fujii, T.; Terao, K.; Tsuda, M.; Kitamura, S.; Norisuye, T. Solvent-Dependent Conformation of Amylose Tris(phenylcarbamate) as Deduced from Scattering and Viscosity Data. Biopolymers 2009, 91, 729-736.

21. Sano, Y.; Terao, K.; Arakawa, S.; Ohtoh, M.; Kitamura, S.; Norisuye, T. Solution properties of amylose tris(n-butylcarbamate). Helical and global conformation in alcohols. Polymer 2010, 51, 4243-4248.

22. Kong, T. F.; Guo, G. Q.; Zhang, H. T.; Gao, L. Post-synthetic modification of polyvinyl alcohol with a series of N-alkyl-substituted carbamates towards thermo and CO2-responsive polymers. Polym. Chem. 2017, 8, 5769-5779.

23. Aburto, J.; Alric, I.; Thiebaud, S.; Borredon, E.; Bikiaris, D.; Prinos, J.; Panayiotou, C. Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. J. Appl. Polym. Sci. 1999, 74, 1440-1451.

24. Kitamura, S.; Yunokawa, H.; Mitsuie, S.; Kuge, T. Study on Polysaccharide by the Fluorescence Method .2. Micro-Brownian Motion and Conformational Change of Amylose in Aqueous-Solution. Polym. J. 1982, 14, 93-99.

25. Terao, K.; Fujii, T.; Tsuda, M.; Kitamura, S.; Norisuye, T. Solution Properties of Amylose Tris(phenylcarbamate): Local Conformation and Chain Stiffness in 1,4-Dioxane and 2- Ethoxyethanol. Polym. J. 2009, 41, 201-207.

26. Jiang, X. Y.; Kitamura, S.; Sato, T.; Terao, K. Chain Dimensions and Stiffness of Cellulosic and Amylosic Chains in an Ionic Liquid: Cellulose, Amylose, and an Amylose Carbamate in BmimCl. Macromolecules 2017, 50, 3980-3985.

27. Terao, K.; Maeda, F.; Oyamada, K.; Ochiai, T.; Kitamura, S.; Sato, T. Side-chaindependent helical conformation of amylose alkylcarbamates: amylose tris(ethylcarbamate) and amylose tris(n-hexylcarbamate). J. Phys. Chem. B 2012, 116, 12714-20.

28. Ryoki, A.; Kim, D.; Kitamura, S.; Terao, K. Linear and cyclic amylose derivatives having brush like side groups in solution: Amylose tris( n -octadecylcarbamate)s. Polymer 2018, 137, 13-21.

29. Sirvio, J. A.; Heiskanen, J. P. Carbamation of Starch with Amine Using Dimethyl Carbonate as Coupling Agent. ACS Omega 2019, 4, 15702-15710.

30. Jinbo, Y.; Teranuma, O.; Kanao, M.; Sato, T.; Teramoto, A. Light-scattering study of semiflexible polymer solutions. 4. n-hexane solutions of poly(n-hexyl isocyanate). Macromolecules 2003, 36, 198-203.

31. Furusawa, K.; Terao, K.; Nagasawa, N.; Yoshii, F.; Kubota, K.; Dobashi, T. Nanometersized gelatin particles prepared by means of gamma-ray irradiation. Colloid. Polym. Sci. 2004, 283, 229-233.

32. Berry, G. C. Thermodynamic and Conformational Properties of Polystyrene. I. LightScattering Studies on Dilute Solutions of Linear Polystyrenes. J. Chem. Phys. 1966, 44, 4550- 4564.

33. Shimizu, N.; Mori, T.; Igarashi, N.; Ohta, H.; Nagatani, Y.; Kosuge, T.; Ito, K. Refurbishing of Small-Angle X-ray Scattering Beamline, BL-6A at the Photon Factory. J. Phys.: Conf. Ser. 2013, 425, 202008.

34. Shimizu, N.; Yatabe, K.; Nagatani, Y.; Saijyo, S.; Kosuge, T.; Igarashi, N. Software development for analysis of small-angle X-ray scattering data. AIP Conf. Proc. 2016, 1741, 050017.

35. Holtzer, A. Interpretation of the Angular Distribution of the Light Scattered by a Polydisperse System of Rods. J. Polym. Sci. 1955, 17, 432-434.

36. Burchard, W.; Kajiwara, K. The statistics of stiff chain molecules. I. The particle scattering factor. Proc. R. Soc. London, Ser. A 1970, 316, 185-199.

37. Yamakawa, H.; Yoshizaki, T. Helical Wormlike Chains in Polymer Solutions. Springer: Berlin, Germany, 2016.

38. Nakamura, Y.; Norisuye, T. Brush-like polymers. In Soft Matter Characterization, Borsali, R.; Pecora, R., Eds. Springer Netherlands: 2008; pp 235-286.

39. Nakamura, Y.; Norisuye, T. Scattering function for wormlike chains with finite thickness. J. Polym. Sci., Part. B: Polym. Phys. 2004, 42, 1398-1407.

40. Yamakawa, H.; Stockmayer, W. H. Statistical mechanics of wormlike chains. II. Excluded volume effects. J. Chem. Phys. 1972, 57, 2843-2854.

41. Shimada, J.; Yamakawa, H. Statistical-Mechanics of Helical Worm-Like Chains .25. Excluded-Volume Effects. J. Chem. Phys. 1986, 85, 591-600.

42. Norisuye, T.; Fujita, H. Excluded-Volume Effects in Dilute Polymer Solutions. XIII. Effects of Chain Stiffness. Polym. J. 1982, 14, 143-147.

43. Norisuye, T.; Tsuboi, A.; Teramoto, A. Remarks on Excluded-Volume Effects in Semiflexible Polymer Solutions. Polym. J. 1996, 28, 357-361.

44. Benoit, H.; Doty, P. Light Scattering from Non-Gaussian Chains. J. Phys. Chem. 1953, 57, 958-963.

45. Yamakawa, H.; Fujii, M. Translational Friction Coefficient of Wormlike Chains. Macromolecules 1973, 6, 407-415.

46. Burchard, W. Das Viskositatsverhalten Von Amylose in Verschiedenen Losungsmitteln .24. Makromol. Chem. 1963, 64, 110-125.

47. Nakanishi, Y.; Norisuye, T.; Teramoto, A.; Kitamura, S. Conformation of Amylose in Dimethyl-Sulfoxide. Macromolecules 1993, 26, 4220-4225.

48. Norisuye, T. Viscosity Behavior and Conformation of Amylose in Various Solvents. Polym. J. 1994, 26, 1303-1307.

49. Seger, B.; Aberle, T.; Burchard, W. Solution behaviour of cellulose and amylose in ironsodiumtartrate (FeTNa). Carbohydr. Polym. 1996, 31, 105-112.

50. Terao, K.; Murashima, M.; Sano, Y.; Arakawa, S.; Kitamura, S.; Norisuye, T. Conformational, Dimensional, and Hydrodynamic Properties of Amylose Tris(n-butylcarbamate) in Tetrahydrofuran, Methanol, and Their Mixtures. Macromolecules 2010, 43, 1061-1068.

51. Watanabe, R.; Takaseki, K.; Katsumata, M.; Matsushita, D.; Ida, D.; Osa, M. Characterization of poly(N,N-diethylacrylamide) and cloud points in its aqueous solutions. Polym. J. 2016, 48, 621-628.

52. Ochiai, T.; Terao, K.; Nakamura, Y.; Yoshikawa, C.; Sato, T. Rigid helical conformation of curdlan tris(phenylcarbamate) in solution. Polymer 2012, 53, 3946-3950.

53. Jiang, X. Y.; Ryoki, A.; Terao, K. Dimensional and hydrodynamic properties of cellulose tris(alkylcarbamate)s in solution: Side chain dependent conformation in tetrahydrofuran. Polymer 2017, 112, 152-158.

54. Norisuye, T. Semiflexible Polymers in Dilute-Solution. Prog. Polym. Sci. 1993, 18, 543- 584.

55. Handa, T.; Yajima, H. On the blue color of triiodide ions in starch and starch fractions. II. Characterization of the changes in absorption and circular dichroism spectra of triiodide ions in amylose with the DP. Biopolymers 1980, 19, 723-740.

56. Cronan, C. L.; Schneider, F. W. Cooperativity and composition of the linear amyloseiodine-iodide complex. J. Phys. Chem. 1969, 73, 3990-4004.

57. Huang, D. C.; Zhang, Q.; Deng, Y.; Luo, Z.; Li, B.; Shen, X.; Qi, Z. H.; Dong, S. Y.; Ge, Y.; Chen, W. Polymeric crown ethers: LCST behavior in water and stimuli-responsiveness. Polym. Chem. 2018, 9, 2574-2579.

参考文献をもっと見る