リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nd:YVO4 laser groove treatment can improve the shear bond strength between dental PEEK and adhesive resin cement with an adhesive system」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nd:YVO4 laser groove treatment can improve the shear bond strength between dental PEEK and adhesive resin cement with an adhesive system

木村 仁美 広島大学

2022.03.23

概要

Polyetheretherketone is a polymer consisting of aromatic benzene molecules linked by
functional ethers or ketone groups1,2). Furthermore, polyetheretherketon is a high-performance
thermoplastic with excellent mechanical properties, low water absorption, and fracture
resistance3-6). Dental polyetheretherketon (PEEK) has recently attracted attention in the dental
field as a useful material for interim prostheses, removable prosthodontics, splints, implants,
and abutment screws7-13). PEEK has a high material processability and can be formed by a hotpress method or be fabricated by computer-aided design and manufacturing technology.
However, PEEK has a low free energy and an inert hydrophobic surface, resulting in poor
adhesion properties between PEEK and adhesive resin cement14). Recent research has focused
on PEEK surface modification and altered adhesive systems to obtain strong adhesion
performance between the PEEK surface and resin cement15-17). Several surface treatments, such
as conventional sandblasting treatment12,18,19), acid etching12,18-22), silicone coating12,18,23), and
plasma treatment20,24,25) have been studied to improve the bonding strength of the cement. Many
researchers have recommended surface treatment with 98% sulfuric acid to improve PEEK
bonding12,18,20-22); however, this chemical is toxic, and its use in dental clinics presents safety
concerns and is not practical20). ...

この論文で使われている画像

参考文献

1.

Stawarczyk B, Jordan P, Schmidlin PR, Roos M, Eichberger M, Gernet W, et al. PEEK

surface treatment effects on tensile bond strength to veneering resins. J Prosthet Dent

2014; 112: 1278-1288.

2.

Stawarczyk B, Thrun H, Eichberger M, Roos M, Edelhoff D, Schweiger J, et al. Effect

of different surface pretreatments and adhesives on the load-bearing capacity of

veneered 3-unit PEEK FDPs. J Prosthet Dent 2015; 114: 666-673.

3.

Katzer A, Marquardt H, Westendorf J, Wening JV, Foerster GV. Polyetheretherketone

—cytotoxicity and mutagenicity in vitro. Biomaterials 2002; 23: 1749-1759.

4.

Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants.

Biomaterials 2007; 28: 4845-4869.

5.

Wang H, Xu M, Zhang W, Kwok DT, Jiang J, Wu Z, et al. Mechanical and biological

characteristics of diamond-like carbon coated poly aryl-ether-ether-ketone.

Biomaterials 2010; 31: 8181-8187.

6.

Zhao Y, Wong HM, Wang W, Li P, Xu Z, Chong EYW, et al. Cytocompatibility,

osseointegration, and bioactivity of three-dimensional porous and nanostructured

network on polyetheretherketone. Biomaterials 2013; 34: 9264-9277.

23

7.

Meningaud JP, Spahn F, Donsimoni JM. After titanium, PEEK? Rev Stomatol Chir

Maxillofac 2012; 113: 407-410.

8.

Santing HJ, Meijer HJ, Raghoebar GM, Özcan M. Fracture strength and failure mode

of maxillary implant-supported provisional single crowns: a comparison of composite

resin crowns fabricated directly over PEEK abutments and solid titanium abutments.

Clin Implant Dent Relat Res 2012; 14: 882-889.

9.

Wu X, Liu X, Wei J, Ma J, Deng F, Wei S. Nano-TiO2/PEEK bioactive composite as

a bone substitute material: in vitro and in vivo studies. Int J Nanomedicine 2012; 7:

1215-1225.

10. Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ. Stress shielding and fatigue

limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B Appl

Biomater 2012; 100: 1044-1052.

11. Schwitalla A, Müller WD. PEEK dental implants: a review of the literature. J Oral

Implantol 2013; 39: 743-749.

12. Stawarczyk B, Beuer F, Wimmer T, Jahn D, Sener B, Roos M, et al.

Polyetheretherketone—a suitable material for fixed dental prostheses? J Biomed Mater

Res B Appl Biomater 2013; 101: 1209-1216.

24

13. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone

(PEEK) in oral implantology and prosthodontics. J Prosthodont Res 2016; 60: 12-19.

14. Ma R, Tang T. Current strategies to improve the bioactivity of PEEK. Int J Mol Sci

2014; 15: 5426-5445.

15. Oilo G. Bond strength testing: what does it mean? Int Dent J 1993; 43: 492-498.

16. Ersu B, Yuzugullu B, Ruya Yazici A, Canay S. Surface roughness and bond strengths

of glass-infiltrated alumina-ceramics prepared using various surface treatments. J Dent

2009; 37: 848-856.

17. Marshall SJ, Bayne SC, Baier R, Tomsia AP, Marshall GW. A review of adhesion

science. Dent Mater 2010; 26: e11-e16.

18. Schmidlin PR, Stawarczyk B, Wieland M, Attin T, Hämmerle CH, Fischer J. Effect of

different surface pre-treatments and luting materials on shear bond strength to PEEK.

Dental Mater 2010; 26: 553-559.

19. Uhrenbacher J, Schmidlin PR, Keul C, Eichberger M, Roos M, Gernet W, et al. The

effect of surface modification on the retention strength of polyetheretherketone crowns

adhesively bonded to dentin abutments. J Prosthet Dent 2014; 112: 1489-1497.

25

20. Zhou L, Qian Y, Zhu Y, Liu H, Gan K, Guo J. The effect of different surface treatments

on the bond strength of PEEK composite materials. Dental Mater 2014; 30: e209-e215.

21. Sproesser O, Schmidlin PR, Uhrenbacher J, Roos M, Gernet W, Stawarczyk B. Effect

of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin

cements. J Adhes Dent 2014; 16: 465-472.

22. Silthampitag P, Chaijareenont P, Tattakorn K, Banjongprasert C, Takahashi H,

Arksornnukit M. Effect of surface pretreatments on resin composite bonging to PEEK.

Dental Mater J 2016; 35: 668-674.

23. Kern M, Lehmann F. Influence of surface conditioning on bonding to

polyetheretherketon (PEEK). Dental Mater 2012; 28: 1280-1283.

24. Stawarczyk B, Bähr N, Beuer F, Wimmer T, Eichberger M, Gernet W, et al. Influence

of plasma pretreatment on shear bond strength of self-adhesive resin cements to

polyetheretherketone. Clin Oral Investig 2014; 18: 163-170.

25. Bötel F, Zimmermann T, Sütel M, Müller WD, Schwitalla AD. Influence of different

low-pressure plasma process parameters on shear bond strength between veneering

composites and PEEK materials. Dent Mater 2018; 34: e246-e254.

26

26. Kazama-Koide M, Ohkuma K, Ogura H, Miyagawa Y. A new method for fabricating

zirconia copings using a Nd:YVO4 nanosecond laser. Dent Mater J 2014; 33: 422-429.

27. Tsuka H, Morita K, Kato K, Kimura H, Abekura H, Hirata I, et al. Effect of laser

groove

treatment

on shear bond strength

of

resin-based

luting

agent

to polyetheretherketone (PEEK). J Prosthodont Res 2019; 63: 52-57.

28. Fuhrmann G, Steiner M, Freitag Wolf S, Kerm M. Resin bonding to three types of

polyaryletherketones (PAEKs)-durability and influence of surface conditioning. Dent

Mater 2014; 30: 357-363.

29. Çulhaoğlu AK, Özkır SE, Şahin V, Yılmaz B, Kılıçarslan MA. Effect of various

treatment modalities on surface characteristics and shear bond strengths of

polyetheretherketone-based core materials. J Prosthodont 2020;29:136-141.

30. Tsuka H, Morita K, Kato K, Kawano H, Abekura H, Tsuga K. Evaluation of shear

bond strength between PEEK and resin-based luting material. J Oral Biosciences 2017;

59: 231-236.

27

31. Abe Y, Hiasa K, Hirata I, Okazaki Y, Nogami K, Mizumachi W, et al. Detection of

synthetic RGDS(PO3H2)PA peptide adsorption using a titanium surface plasmon

resonance biosensor. J Mater Sci Mater Med. 2011; 22: 657-661.

32. Stawarczyk B, Keul C, Beuer F, Roos M, Schmidlin PR. Tensile bond strength of

veneering resins to PEEK: impact of different adhesives. Dent Mater J 2013; 32: 441448.

33. Keul C, Liebermann A, Schmidlin PR, Roos M, Sener B, Stawarczyk B. Influence of

PEEK surface modification on the retention of two veneering resin composites. J

Adhes Dent 2014; 16: 383-392.

34. Rosentritt M, Preis V, Behr M, Sereno N, Kolbeck C. Shear bond strength between

veneering composite and PEEK after different surface modifications. Clin Oral

Investig 2015; 19: 739-744.

35. Tsujimoto A, Barkmeier WW, Takamizawa T, Wilwerding TM, Latta MA, Miyazaki

M. Interfacial Characteristics and Bond Durability of Universal Adhesive to Various

Substrates. Oper Dent 2017; 42: E59-E70.

28

36. Caglar I, Ates SM, Yesil Duymus Z. An In Vitro Evaluation of the Effect of

Various Adhesives and Surface Treatments on Bond Strength of Resin Cement

to Polyetheretherketone. J Prosthodont 2019; 28: e342-e349.

37. Gumus HO, Kurtulus IL, Kuru E. Evaluation and comparison of the film thicknesses

of six temporary cements before and after thermal cycling. Niger J Clin Pract 2018;

21: 1656-1661.

38. Hallmann L, Mehl A, Sereno N, Hämmerle CHF. The improvement of adhesive

properties of PEEK through different pre-treatments. Appl Surf Sci 2012; 258: 72137218.

29

Figure Captions

Fig. 1 SEM image of the PEEK surface by using a scanning electron microscope operating at

1.7 kV and at a distance of 5.0–6.0 mm after each surface treatment. A: no surface pretreatment

(no treatment), smooth and homogeneous surface B: air abrasion with 50 μm alumina oxide

particles at 0.1 MPa at a 10 mm distance for 10 seconds (sandblasting treatment), many convex

precipitates compared with the untreated PEEK surface C: acid etched with sulfuric acid (98%)

for 1 min and then rinsed with deionized water for 1 min (sulfuric acid etching), large pits and

pores surface D: Nd:YVO4 laser irradiation at an interval of 200 μm in the side and vertically

and at a depth of 150 μm (laser groove treatment), regular grooves in a grid pattern and

undercutting surface

Fig. 2 Mean and standard deviation for surface roughness values (n=20)

Note: Asterisks represent significant difference (p<0.05)

Fig. 3 Mean and standard deviation for water contact angle values (n=20)

Note: Asterisks represent significant difference (p<0.05)

30

Fig. 4 Wide-scan spectra of (A) no treatment, (B) sandblasting treatment, (C) sulfuric acid

treatment, and (D) Nd:YVO4 laser groove treatment PEEK surfaces by XPS.

Fig. 5 C1s spectra of (A) no treatment, (B) sandblasting treatment, (C) sulfuric acid treatment,

and (D) Nd:YVO4 laser groove treatment PEEK surfaces by XPS.

Abbreviated word: CC: C-C bonds, CO: C-O bonds, COO: O-C=O bonds

Fig. 6 Mean and standard deviation for shear bond strength (MPa) of specimens with different

surface treatment of 24h after specimen preparation and after thermal cycling (10,000 cycles)

for no treatment, sandblasting treatment, sulfuric-acid etching, and laser groove treatment

Note: Within the same column, the same superscripted letters indicate no significant differences

(p>0.05)

Interaction of surface treatment and thermal cycle for RelyX Ultimate Resin Cement: p=0.0402,

for Super-Bond C&B: p=0.0641

31

Fig. 7 SEM image of the fractured surfaces of PEEK following shear bond test after the thermal

cycle (A group: no treatment, B group: sandblasting treatment, C group: sulfuric acid

etching).

A-1 (low magnification), A-2 (medium magnification), A-3 (high magnification),

B-1 (low magnification), B-2 (medium magnification), B-3 (high magnification),

C-1 (low magnification), C-2 (medium magnification), C-3 (high magnification)

A and B group: No resin cement was observed on both the surface of the no treatment and the

sandblasting treated specimens.

C group: A resin cement was observed on the surface of the sulfuric-acid-etched specimens.

Abbreviated word: a: PEEK, b: Adhesive resin cement

Fig. 8 SEM image of the fractured surfaces of PEEK following shear bond test after the thermal

cycle

D-1, D-2, D-3: laser groove treatment/Rely X Ultimate Resin Cement

D-4, D-5, D-6: laser groove treatment/Super-Bond C&B

D-1 (low magnification), D-2 (medium magnification), D-3 (high magnification),

D-4 (low magnification), D-5 (medium magnification), D-6 (high magnification),

32

On the surfaces of laser-groove-treated specimens, large amounts of resin cement and broken

PEEK material were observed remaining in the groove.

Abbreviated word: a: PEEK, b: Adhesive resin cement

33

Fig. 1 SEM image of the PEEK surface by using a scanning electron microscope operating at 1.7 kV

and at a distance of 5.0–6.0 mm after each surface treatment. A: no surface pretreatment (no treatment),

smooth and homogeneous surface B: air abrasion with 50 μm alumina oxide particles at 0.1 MPa at

a 10 mm distance for 10 seconds (sandblasting treatment), many convex precipitates compared with

the untreated PEEK surface C: acid etched with sulfuric acid (98%) for 1 min and then rinsed with

deionized water for 1 min (sulfuric acid etching), large pits and pores surface D: Nd:YVO4 laser

irradiation at an interval of 200 μm in the side and vertically and at a depth of 150 μm (laser groove

treatment), regular grooves in a grid pattern and undercutting surface

34

Fig. 2 Mean and standard deviation for surface roughness values (n=20)

Note: Asterisks represent significant difference (p<0.05)

35

Fig. 3 Mean and standard deviation for water contact angle values (n=20)

Note: Asterisks represent significant difference (p<0.05)

36

Fig. 4 Wide-scan spectra of (A) no treatment, (B) sandblasting treatment, (C) sulfuric acid treatment,

and (D) Nd:YVO4 laser groove treatment PEEK surfaces by XPS.

37

Fig. 5 C1s spectra of (A) no treatment, (B) sandblasting treatment, (C) sulfuric acid treatment, and (D)

Nd:YVO4 laser groove treatment PEEK surfaces by XPS.

Abbreviated word: CC: C-C bonds, CO: C-O bonds, COO: O-C=O bonds

38

Fig. 6 Mean and standard deviation for shear bond strength (MPa) of specimens with different surface

treatment of 24h after specimen preparation and after thermal cycling (10,000 cycles) for no treatment,

sandblasting treatment, sulfuric-acid etching, and laser groove treatment

Note: Within the same column, the same superscripted letters indicate no significant differences (p>0.05)

39

Fig. 7 SEM image of the fractured surfaces of PEEK following shear bond test after the thermal cycle

(A group: no treatment, B group: sandblasting treatment, C group: sulfuric acid etching).

A-1 (low magnification), A-2 (medium magnification), A-3 (high magnification),

B-1 (low magnification), B-2 (medium magnification), B-3 (high magnification),

C-1 (low magnification), C-2 (medium magnification), C-3 (high magnification)

A and B group: No resin cement was observed on both the surface of the no treatment and the

sandblasting treated specimens.

C group: A resin cement was observed on the surface of the sulfuric-acid-etched specimens.

Abbreviated word: a: PEEK, b: Adhesive resin cement

40

Fig. 8 SEM image of the fractured surfaces of PEEK following shear bond test after the thermal cycle

D-1, D-2, D-3: laser groove treatment/Rely X Ultimate Resin Cement

D-4, D-5, D-6: laser groove treatment/Super-Bond C&B

D-1 (low magnification), D-2 (medium magnification), D-3 (high magnification),

D-4 (low magnification), D-5 (medium magnification), D-6 (high magnification),

On the surfaces of laser-groove-treated specimens, large amounts of resin cement and broken PEEK

material were observed remaining in the groove.

Abbreviated word: a: PEEK, b: Adhesive resin cement

41

Table 1. List of materials used in the present study

Materials

Product name

Main composition

PEEK

Vestakeep

DC4450

Polyetheretherketone, 20%

Titanium dioxide pigments

Adhesive

system

Visio.link

MMA, pentaerythritol

triacrylate, photo initiators

Adhesive

resin cements

RelyX Ultimate

Resin Cement

Adhesive

resin cements

Super-Bond

C&B

Lot. number

Manufacturer

Daical-Evonik

171018

Bredent GmbH

& Co KG

Methacrylate monomer,

silica, polymerization

initiator

653276

3M ESPE

MMA, 4-META, TBB,

PMMA

SS1

Sun Medical

Co. Ltd.

MMA: methyl methacrylate, 4-META: 4-methacryloxyethyl trimellitate anhydride, TBB: tributylborane,

PMMA: polymethyl methacrylate

42

Table 2. Atomic compositions of C, O, N, Al, and Ti elements (Upper Table) and of CC, CO, and COO

functional groups (Lower Table) in No treatment, Sandblasting treatment, Sulfuric acid treatment, and

Laser groove treatment from XPS analysis

Group

%C

%O

%N

%Al

%Ti

No treatment

81.9

16.0

2.1

Sandblasting treatment

62.9

31.7

5.3

0.1

Sulfuric acid etching

73.5

26.2

0.3

Laser groove treatment

72.1

23.5

1.4

2.9

Group

%CC

%CO

%COO

No treatment

65.5

29.5

5.1

Sandblasting treatment

63.9

20.7

15.4

Sulfuric acid etching

64.6

25.8

9.6

Laser groove treatment

57.1

29.1

13.9

43

Table 3. Failure modes

Group

Failure mode

No treatment

Sandblasting treatment

Sulfuric acid etching

Laser groove

treatment

Shear bond strength tested 24h

after specimens preparation

Shear bond strength tested after

thermal cycling (10,000 cycles)

RelyX Ultimate

Resin Cement

Super-Bond

C&B

RelyX Ultimate

Resin Cement

Super-Bond

C&B

a/b/c/d

a/b/c/d

a/b/c/d

a/b/c/d

10 / 0 / 0 / 0

9/0/0/1

10 / 0 / 0 / 0

10 / 0 / 0 / 0

9/0/0/1

10 / 0 / 0 / 0

10 / 0 / 0 / 0

9/0/0/1

4/0/0/6

6/0/0/4

5/0/0/5

5/0/0/5

0 / 0 / 10 / 0

0 / 0 / 10 / 0

0 / 0 / 10 / 0

0 / 0 / 10 / 0

Failure modes:

a) adhesive failure between materials and luting agents

b) cohesive failure within adhesive luting agents

c) cohesive failure within materials

d) mixed failure with both cohesive and adhesive failures

44

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る