リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Intraspecific variation in growth-related traits—from leaf to whole-tree—in three provenances of Cryptomeria japonica canopy trees grown in a common garden」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Intraspecific variation in growth-related traits—from leaf to whole-tree—in three provenances of Cryptomeria japonica canopy trees grown in a common garden

Azuma, Wakana A. Kawai, Kiyosada Tanabe, Tomoko Nakahata, Ryo Hiura, Tsutom 神戸大学

2023.01

概要

To elucidate the physiological and morphological factors underlying intraspecific variation in growth rate, we examined the variation in leaf and whole-tree traits for three geographical variations of ca. 45-year-old Japanese cedar (Cryptomeria japonica D. Don) with contrasting heights and radial growth in a common garden. Traits that reflect leaf-level photosynthesis, water relations, and whole-tree level crown structure in relation to light use and hydraulic architecture were measured. Overall, intraspecific variation in growth characteristics in field-grown adult trees was regulated by whole-tree properties rather than leaf properties. Most leaf traits were similar among provenances. Nevertheless, the leaf traits exhibited highest maximum net photosynthetic rate, dark respiration rate, and light compensation point in provenances whose native habitats are most similar to the common garden in the present study. Together with previous reports that this provenance has higher root nutrient acquisition capacity than the other two provenances, it can be said that organ-level resource use strategies are coupled in a tandem manner. At the whole-tree level, hydraulic architecture—as explained by axial variation in the hydraulically weighted tracheid diameter—can be linked to leaf distribution with respect to light use strategies as well as water transport capacity, leading to differences in growth characteristics among provenances. The study of intraspecific variation in growth characteristics in trees with a wide range of native habitats is expected to be a useful indicator for predicting changes in growth potential and forest dynamics in response to climate change in each habitat.

この論文で使われている画像

参考文献

31

535

Anfodillo T, Carraro V, Carrer M, et al (2006) Convergent tapering of xylem conduits in

536

different woody species. New Phytologist 169:279–290. doi: 10.1111/j.1469-

537

8137.2005.01587.x

538

Anfodillo T, Petit G, Crivellaro A (2013) Axial conduit widening in woody species: A

539

still neglected anatomical pattern. IAWA Joural 34:352–364. doi:

540

10.1163/22941932-00000030

541

Arenas-Navarro, M., Oyama, K., García-Oliva, F., Torres-Miranda, A., De La Riva, E.

542

G. & Terrazas, T. (2021) The role of wood anatomical traits in the coexistence of

543

oak species along an environmental gradient. AoB PLANTS, 13, 6, 1–14. doi:

544

10.1093/aobpla/plab066

545

Asner GP, Martin RE, Tupayachi R, et al (2014) Amazonian functional diversity from

546

forest canopy chemical assembly. Proceedings of the National Academy of

547

Sciences of the United States of America 111:5604–5609. doi:

548

10.1073/pnas.1401181111

549

Azuma W, Ishii HRR, Kuroda K, Kuroda K (2016) Function and structure of leaves

550

contributing to increasing water storage with height in the tallest Cryptomeria

551

japonica trees of Japan. Trees—Structure and Function 30:141–152. doi:

552

10.1007/s00468-015-1283-3

32

553

Bartoń K (2016) MuMIn: Multi-Model Inference. R package version 1.43.17.

554

Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models

555

using lme4. Journal of Statistical Software 67:1–48. doi: 10.18637/jss.v067.i01

556

Brodribb TJ (2009) Xylem hydraulic physiology: The functional backbone of terrestrial

557

plant productivity. Plant Science 177:245–251. doi: 10.1016/j.plantsci.2009.06.001

558

Brodribb TJ, Feild TS (2000) Stem hydraulic supply is linked to leaf photosynthetic

559

capacity: evidence from New Caledonian and Tasmanian rainforests. Plant, Cell &

560

Environment 23:1381–1388. doi: 10.1046/j.1365-3040.2000.00647.x

561

Cavender-Bares J (2019) Diversification, adaptation, and community assembly of the

562

American oaks (Quercus), a model clade for integrating ecology and evolution.

563

New Phytologist 221:669–692. doi: 10.1111/nph.15450

564

565

Coley P, Barone J (1996) Herbivory and plant defenses. The Annual Review of Ecology,

Evolution, and Systematics 27:305–335. doi: 10.1146/annurev.ecolsys.27.1.305

566

Denne MP (1988) Definition of latewood according to Mork (1928). IAWA J 10:59–62.

567

Enquist BJ (2003) Cope’s rule and the evolution of long-distance transport in vascular

568

plants: Allometric scaling, biomass partitioning and optimization. Plant, Cell &

569

Environment 26:151–161. doi: 10.1046/j.1365-3040.2003.00987.x

570

Fan ZX, Zhang SB, Hao GY, et al (2012) Hydraulic conductivity traits predict growth

33

571

rates and adult stature of 40 Asian tropical tree species better than wood density. J

572

Ecol 100:732–741. doi: 10.1111/j.1365-2745.2011.01939.x

573

Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and

574

photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537. doi:

575

10.1146/annurev.pp.40.060189.002443

576

Forestry Agency of Japan. 2011. 2011 Forestry census. Tokyo: Forestry Agency.

577

Geological Survey of Japan. AIST (ed.) (2015) Seamless digital geological map of

578

Japan 1: 200,000. May 29, 2015 version. Geological survey of Japan. (English and

579

Japanese)

580

van Gelder HA, Poorter L, Sterck FJ (2006) Wood mechanics, allometry, and life-

581

history variation in a tropical rain forest tree community. New Phytol 171:367–

582

378. doi: 10.1111/j.1469-8137.2006.01757.x.

583

Gibert A, Gray EF, Westoby M, et al (2016) On the link between functional traits and

584

growth rate: meta-analysis shows effects change with plant size, as predicted. J

585

Ecol 104:1488–1503. doi: 10.1111/1365-2745.12594

586

587

588

Givnish TJ (1988) Adaptation to sun and shade: a whole-plant perspective. Australian

Journal of Plant Physiology 15:63–92. doi: 10.1071/PP9880063

Grime JP, Thompson K, Hunt R, et al (1997) Integrated screening validates primary

34

589

590

axes of specialisation in plants. Oikos 79:259–281. doi: 10.2307/3546011

Hacke UG, Spicer R, Schreiber SG, Plavcová L (2017) An ecophysiological and

591

developmental perspective on variation in vessel diameter. Plant, Cell &

592

Environment 40: 831-845. doi: 10.1111/pce.12777

593

Hietz P, Rosner S, Hietz-Seifert U, Wright SJ (2017) Wood traits related to size and life

594

history of trees in a Panamanian rainforest. New Phytologist 213:170–180. doi:

595

10.1111/nph.14123

596

Hinckley TM, Duhme F, Hinckley AR, Richter H (1980) Water relations of drought

597

hardy shrubs: osmotic potential and stomatal reactivity. Plant, Cell & Environment

598

3:131–140. doi: 10.1111/1365-3040.ep11580919

599

Hiura T, Yoshioka H, Matsunaga SN, Saito T, Kohyama TI, Kusumoto N, Uchiyama K,

600

Suyama Y, Tsumura Y (2021) Diversification of terpenoid emissions proposes a

601

geographic structure based on climate and pathogen composition in Japanese cedar.

602

Scientific Reports 11:8307. doi: 10.1038/s41598-021-87810-x

603

Hunt R (1978) Plant growth analysis. Studies in biology no. 96. E Arnold.

604

Hunt R (1982) Plant growth curves. Edward Arnold, London.

605

Iida Y, Kohyama TS, Swenson NG, et al (2014) Linking functional traits and

606

demographic rates in a subtropical tree community: The importance of size

35

607

608

dependency. Journal of Ecology 102:641–650. doi: 10.1111/1365-2745.12221

Inoue Y., Kitaoka, K., Araki, M., Kenzo, T., Saito S. (2018) Seasonal changes in leaf

609

water potential, photosynthetic and transpiration rates in upper canopy needles in

610

Cryptomeria japonica. Kanto Japanese Forest Research 69: 19–22. (In Japanese

611

with English summary).

612

Ishii H, Asano S (2010) The role of crown architecture, leaf phenology and

613

photosynthetic activity in promoting complementary use of light among coexisting

614

species in temperate forests. Ecological Research 25:715–722. doi:

615

10.1007/s11284-009-0668-4

616

Ishii H, Takashima A, Makita N, Yoshida S (2010) Vertical stratification and effects of

617

crown damage on maximum tree height in mixed conifer-broadleaf forests of

618

Yakushima Island, southern Japan. Plant Ecology 211:27–36. doi: 10.1007/s11258-

619

010-9768-z

620

Ishii HR, Horikawa Shin-ichiro, Noguchi Y, Azuma W (2018) Variation of intra-crown

621

leaf plasticity of Fagus crenata across its geographical range in Japan. Forest

622

Ecology and Management 429:437–448. doi: 10.1016/j.foreco.2018.07.016

623

624

Itaka S, Yoshida S, Mizoue N, Ota T, Takashima A, Kajisa T, Yasue K (2013) Estimation

of growth rates based on tree-ring analysis of Cryptomeria japonica on Yakushima

36

625

626

Island, Japan. Journal of Forest Planning 19:1–7. doi: 10.20659/jfp.19.1_1

Kanda T, Takata Y, Kohyama K, Ohkura T, Maejima Y, Wakabayashi S, Obara H (2018)

627

New soil maps of Japan based on the comprehensive soil classification system of

628

Japan – first approximation and its application to the world Reference Base for soil

629

resources 2006. Japan Agricultural Research Quarterly 49:217–226. doi:

630

10.6090/jarq.52.285

631

King DA, Davies SJ, Tan S, Noor NSM (2006) The role of wood density and stem

632

support costs in the growth and mortality of tropical trees. Journal of Ecology

633

94:670–680. doi: 10.1111/j.1365-2745.2006.01112.x

634

Kitajima K (1994) Relative importance of photosynthetic traits and allocation patterns

635

as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419–

636

428. doi: 10.1007/BF00324232

637

Kobayashi, H., Inoue, S. & Gyokusen, K. (2010) Spatial and temporal variations in the

638

photosynthesis-nitrogen relationship in a Japanese cedar (Cryptomeria japonica D.

639

Don) canopy. Photosynthetica, 48, (2), 249−256. doi: 10.1007/s11099-010-0031-6

640

Liu, H., Gleason, S. M., Hao, G., Hua, L., He, P., Goldstein, G. & Ye, Qing. (2019)

641

Hydraulic traits are coordinated with maximum plant height at the global scale.

642

Science Advances, 5, eaav1332. doi: 10.1126/sciadv.aav1332

37

643

Martínez-Vilalta J, Mencuccini M, Vayreda J, Retana J (2010) Interspecific variation in

644

functional traits, not climatic differences among species ranges, determines

645

demographic rates across 44 temperate and Mediterranean tree species. Journal of

646

Ecology 98:1462–1475. doi: 10.1111/j.1365-2745.2010.01718.x

647

Medeiros CD, Scoffoni C, John GP, et al (2019) An extensive suite of functional traits

648

distinguishes Hawaiian wet and dry forests and enables prediction of species vital

649

rates. Functional Ecology 33:712–734. doi: 10.1111/1365-2435.13229

650

Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological

651

scales? A case for trait-based ecology. Ecological Letter 13:838–848. doi:

652

10.1111/j.1461-0248.2010.01476.x

653

Montgomery RA, Chazdon RL (2002) Light gradient partitioning by tropical tree

654

seedlings in the absence of canopy gaps. Oecologia 131:165–174. doi:

655

10.1007/s00442-002-0872-1

656

Moreira X, Mooney KA, Rasmann S, et al (2014) Trade-offs between constitutive and

657

induced defences drive geographical and climatic clines in pine chemical defences.

658

Ecological Letter 17:537–546. doi: 10.1111/ele.12253

659

660

Nabeshima E, Kubo T, Hiura T (2010) Variation in tree diameter growth in response to

the weather conditions and tree size in deciduous broad-leaved trees. Forest and

38

661

Ecological Management 259:1055–1066. doi: 10.1016/j.foreco.2009.12.012

662

Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from

663

generalized linear mixed-effects models. Methods Ecology and Evolution 4:133–

664

142. doi: 10.1111/j.2041-210x.2012.00261.x

665

Niinemets Ü (2010) A review of light interception in plant stands from leaf to canopy in

666

different plant functional types and in species with varying shade tolerance.

667

Ecological Research 25:693–714. doi: 10.1007/s11284-010-0712-4

668

Nishizono T, Kitahara F, Iehara T, Mitsuda Y (2014) Geographical variation in age-

669

height relationships for dominant trees in Japanese cedar (Cryptomeria japonica D.

670

Don) forests in Japan. Journal of Forest Research 19:305–316. doi:

671

10.1007/s10310-013-0416-z

672

Norman J, Welles J, McDermitt D (1992) Estimating canopy light-use and transpiration

673

efficiencies from leaf measurements. In: Inc. L-C (ed) Li-Cor Application Note

674

#105. Lincoln, NE

675

676

677

678

Obeso JR (2002) The costs of reproduction in plants. New Phytologist 155:321–348.

doi: 10.1046/j.1469-8137.2002.00477.x

Ohta T, Niwa S, Hiura T (2019) Geographical variation in Japanese cedar shapes soil

nutrient dynamics and invertebrate community. Plant and Soil 437:355–373. doi:

39

679

680

10.1007/s11104-019-03983-5

Olson ME, Anfodillo T, Gleason SM, McCulloh KA (2021) Tip-to-base xylem conduit

681

widening as an adaptation: causes, consequences, and empirical priorities. New

682

Phytologist 229: 1877-1893. doi: 10.1111/nph.16961

683

Olson ME, Anfodillo T, Rosell JA, et al (2014) Universal hydraulics of the flowering

684

plants: Vessel diameter scales with stem length across angiosperm lineages, habits

685

and climates. Ecological Letter 17:988–997. doi: 10.1111/ele.12302

686

Olson ME, Soriano D, Rosell JA, et al (2018) Plant height and hydraulic vulnerability to

687

drought and cold. Proceedings of the National Academy of Sciences of the United

688

States of America 115:7551–7556. doi: 10.1073/pnas.1721728115

689

Onoda Y, Saluñga JB, Akutsu K, et al (2014) Trade-off between light interception

690

efficiency and light use efficiency: Implications for species coexistence in one-

691

sided light competition. Journal of Ecology 102:167–175. doi: 10.1111/1365-

692

2745.12184

693

Osada N, Nabeshima E, Hiura T (2015) Geographic variation in shoot traits and

694

branching intensity in relation to leaf size in Fagus crenata: a common garden

695

experiment. American Journal of Botany 102:878–887. doi: 10.3732/ajb.1400559

696

Osone Y, Hashimoto S, Kenzo T (2021) Verification of our empirical understanding of

40

697

the physiology and ecology of two contrasting plantation species using a trait

698

database. PLoS One 16:274–275. doi: 10.1371/journal.pone.0254599

699

Parker WC, Colombo SJ (1995) A critical re-examination of pressure-volume analysis

700

of conifer shoots: comparison of three procedures for generating PV curves on

701

shoots of Pinus resinosa Ait. seedlings. Journal of Experimental Botany 46:1701–

702

1709.

703

Petit G, Anfodillo T, Mencuccini M (2008) Tapering of xylem conduits and hydraulic

704

limitations in sycamore (Acer pseudoplatanus) trees. New Phytologist 177:653–

705

664. doi: 10.1111/j.1469-8137.2007.02291.x

706

Poorter H, Jagodzinski AM, Ruiz-Peinado R, et al (2015) How does biomass

707

distribution change with size and differ among species? An analysis for 1200 plant

708

species from five continents. New Phytologist 208:736–749. doi:

709

10.1111/nph.13571

710

711

712

Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species

differing in relative growth rate. Oecologia 83:553–559.

Poorter L, Bongers F, Sterck FJ, Wöll H (2003) Architecture of 53 rain forest tree

713

species differing in adult stature and shade tolerance. Ecology 84:602–608.

714

Poorter L, Bongers L, Bongers F (2006) Architecture of 54 moist forest tree species:

41

715

traits, trade-offs, and functional groups. Ecology 87:1289–1301. doi: 10.1890/07-

716

0207.1

717

Poorter L, McDonald I, Alarcón A, et al (2010) The importance of wood traits and

718

hydraulic conductance for the performance and life history strategies of 42

719

rainforest tree species. New Phytologist 185:481–492.

720

721

722

R core Team (2019) R: A language and environment for statistical computing. R

Foundation for Statistical Computing.

Reich PB (2014) The world-wide ‘fast-slow’ plant economics spectrum: a traits

723

manifesto. Journal of Ecology 102:275–301. doi: 10.1111/1365-2745.12211

724

Rosell JA, Olson ME, Anfodillo T (2017) Scaling of xylem vessel diameter with plant

725

size: causes, predictions, and outstanding questions. Current Forestry Reports

726

3:46–59. doi: 10.1007/s40725-017-0049-0

727

Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth: What keeps

728

trees from growing beyond a certain height? Bioscience 47:235–242. doi:

729

10.2307/1313077

730

Santiago LS, Goldstein G, Meinzer FC, et al (2004) Leaf photosynthetic traits scale

731

with hydraulic conductivity and wood density in Panamanian forest canopy trees.

732

Oecologia 140:543–550. doi: 10.1007/s00442-004-1624-1

42

733

734

735

736

Schindelin J, Arganda-Carreras I, Frise E, et al (2012) Fiji: an open-source platform for

biological-image analysis. Nature Methods 9:676–82. doi: 10.1038/nmeth.2019

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of

image analysis. Nature Methods 9:671–675. doi: 10.1038/nmeth.2089

737

Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form-

738

the pipe model theory I. Basic analyses. Japanese Journal of Ecology 14:97–105.

739

doi: 10.1086/368398

740

741

742

Sperry JS (2003) Evolution of water transport and xylem structure. International Journal

of Plant Science 164:115–S127. doi: 10.1086/368398

Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use

743

by rhizosphere and xylem conductance: Results from a model. Plant, Cell and

744

Environment 21:347–359. doi: 10.1046/j.1365-3040.1998.00287.x

745

Spicer R, Gartner BL (2001) The effects of cambial age and position within the stem on

746

specific conductivity in Douglas-fir (Pseudotsuga menziesii) sapwood. Trees –

747

Structure and Function 15:222–229. doi: 10.1007/s004680100093

748

Stenberg P (1996) Simulations of the effects of shoot structure and orientation on

749

vertical gradients in intercepted light by conifer canopies. Tree Physiology 16:99–

750

108. doi: 10.1093/treephys/16.1-2.99

43

751

Takashima A, Kume A, Yoshida S, et al (2009) Discontinuous DBH-height relationship

752

of Cryptomeria japonica on Yakushima Island: Effect of frequent typhoons on the

753

maximum height. Ecological Research 24:1003–1011. doi: 10.1007/s11284-008-

754

0574-1

755

Tateishi M, Kumagai T, Suyama Y, Hiura T (2008) Differences in transpiration

756

characteristics of Japanese beech trees, Fagus crenata, in Japan. Tree Physiology

757

30: 748-760. doi: 10.1093/treephys/tpq023

758

Tobita H, Kitao M, Saito T, Kabeya D, Kawasaki T, Yazaki K, Komatsu M and

759

Kajimoto T. (2014) Seasonal variation of photosynthetic parameters within a

760

Crypyomeria japonica crown. Kanto Japanese Forest Research 65: 103–106. (In

761

Japanese with English summary).

762

Tsumura Y, Uchiyama K, Moriguchi Y, et al (2012) Genome scanning for detecting

763

adaptive genes along environmental gradients in the Japanese conifer, Cryptomeria

764

japonica. Heredity (Edinb) 109:349–360. doi: 10.1038/hdy.2012.50

765

Tsumura Y, Uchiyama K, Moriguchi Y, et al (2014) Genetic differentiation and

766

evolutionary adaptation in Cryptomeria japonica. G3 Genes|Genomes|Genetics

767

4:2389–2402. doi: 10.1534/g3.114.013896

768

Tyree MT, Hammel HT (1972) The measurement of the turgor pressure and the water

44

769

relations of plants by the pressure-bomb technique. Journal of Experimental

770

Botany 23:267–282.

771

772

773

774

Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap, Ed. 2.

Springer-Verlag, Berlin.

West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry

of plant vascular systems. Nature 400:664–667. doi: 10.1038/23251

775

Williams CB, Anfodillo T, Crivellaro A, et al (2019) Axial variation of xylem conduits

776

in the Earth’s tallest trees. Trees – Structure and Function 33:1299–1311. doi:

777

10.1007/s00468-019-01859-w

778

Wright SJ, Kitajima K, Kraft NJB, et al (2010) Functional traits and the growth–

779

mortality trade‐off in tropical trees. Ecology 91:3664–3674. doi: 10.1890/09-

780

2335.1

781

Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic

782

adjustment and photosynthesis of citrus under well-watered and water stress

783

conditions. Journal of Plant Physiology 163:417–425. doi:

784

10.1016/j.jplph.2005.04.024.

785

Zheng, J., Li, Y., Morris, H., Vandelook, F. & Jansen, S. (2022) Variation in tracheid

786

dimensions of conifer xylem reveals evidence of adaptation to environmental

45

787

conditions. Fronters in Plant Science, 13, 774241. doi: 10.3389/fpls.2022.774241

46

Table 1. Comparisons of growth and relative growth rate (RGR) for height and diameter at breast

heigh (DBH) in trees from 2013 to 2016, including mean values, standard errors, and the results

of linear mixed model analysis for three provenances (Yaku, Yanase, and Yoshino) of Cryptomeria

japonica. Gh: growth rate for height, Gr: growth rate for DBH, RGRh: relative growth rate for

height, RGRr: relative growth rate for DBH.

Gh

Gr

RGRh

RGRr

Unit

cm yr–1

mm yr–1

10–3 yr–1

10–3 yr–1

Yaku

5.6 (1.6) b

0.36 (0.11) b

6.08 (1.76) b

2.70 (0.80) c

Yanase

20.5 (6.1) a

1.00 (0.29) a

10.72 (3.16) a

5.60 (1.62) a

Yoshino

15.1 (4.5) a

0.95 (0.28) a

9.12 (2.72) ab

3.92 (1.14) b

Different letters indicate significant differences between parameters among provenances (p <

0.05).

47

Table 2. Comparisons of leaf, stem, and whole-tree traits among three provenances of Cryptomeria. japonica, including mean values, standard errors,

and results of one-way ANOVA or Kruskal–Wallis test.

Cultivars of C. japonica

Trait

Symbol

Unit

Yaku

Yanase

CD

3.18 (0.89) b

10.89 (1.23) a

Ratio of crown depth to tree height

RCD

m m–1

0.27 (0.09)

Total branch cross-sectional area per stem volume

TBA

cm2 m–3

Sapwood density

WD

ΨTL

Yoshino

p value

Tree structures

Crown depth

7.53 (0.80) ab

0.012

0.52 (0.08)

0.36 (0.05)

0.142

929 (170) a

594 (36) ab

439 (46) b

0.021

g cm–3

0.39 (0.01) a

0.34 (0.01) b

0.33 (0.01) b

< 0.001

MPa

–1.14 (0.09)

–1.33 (0.06)

–1.31 (0.06)

0.182

Whole-tree hydraulic architecture

Daytime water potential of treetop leaves

48

Daytime water potential of lowest-crown leaves

ΨLL

MPa

–1.05 (0.10)

–1.20 (0.10)

–1.24 (0.04)

0.322

Daytime water potential of fine-roots 1

ΨR

MPa

–0.34 (0.08)

–0.20 (0.06)

–0.19 (0.01)

0.146

MPa

0.80 (0.13)

1.13 (0.12)

1.12 (0.05)

0.113

Kap

kg m–2 s–1 MPa–1

1.19 (0.06) a

0.68 (0.02) b

0.63 (0.04) b

< 0.001

Ep

kg m–2 s–1

0.93 (0.13)

0.77 (0.05)

0.71 (0.06)

0.278

Osmotic potential at turgor loss 1

Ψtlp

MPa

–2.08 (0.20)

–1.64 (0.17)

–2.06 (0.13)

0.430

Osmotic potential at saturation 1

Ψsat

MPa

–1.43 (0.08)

–1.09 (0.26)

–1.45 (0.02)

0.731

RWCtlp

gH2O gH2O–1

0.76 (0.03)

0.76 (0.01)

0.69 (0.02)

0.068

ΨR –

Water potential difference between root and treetop

ΨTL

Axial variation-weighted potential specific xylem

conductance

Potential transpiration rate per unit sapwood area

Leaf water relations

Relative water content at turgor loss

49

Leaf hydraulic capacitance

CL

mol m–2 MPa–1

1.52 (0.22)

1.85 (0.30)

1.94 (0.24)

0.524

Leaf succulence

SL

gH2O m–2

204 (38)

228 (23)

241 (25)

0.687

Leaf dry mass per area ratio 1

LMA

g m–2

411 (36)

321 (1)

385 (40)

0.061

Shoot silhouette area to projected leaf area ratio 1

SPAR

m2 m–2

0.64 (0.01)

0.68 (0.03)

0.74 (0.05)

0.113

Pmax

μmol CO2 m–2 s–1

3.56 (0.26)

3.17 (0.28)

4.05 (0.14)

0.095

nmol CO2 g–1 s–1

8.69 (0.14)

9.87 (0.84)

10.76 (1.28)

0.319

Leaf morphology

Leaf photosynthesis

Maximum net photosynthetic rate

Maximum net photosynthetic rate per leaf dry mass Pmax_mass

Dark respiration rate 1

μmol CO2 m–2 s–1

0.62 (0.02)

0.48 (0.09)

0.80 (0.09)

0.042

Light compensation point 1

LC

μmol PPFD m–2 s–1

21.5 (1.1)

12.5 (4.9)

46.7 (12.9)

0.053

Stable carbon isotope ratio

δ13C

–28.8 (0.27)

–29.7 (0.21)

–29.5 (0.33)

0.054

50

Dry-mass based carbon concentration 1

Cmass

54.0 (0.24)

53.3 (0.35)

53.2 (0.47)

0.200

Dry-mass based nitrogen concentration

Nmass

1.10 (0.04)

1.28 (0.06)

1.21 (0.07)

0.111

Significant differences between provenances are denoted by different letters (Tukey’s HSD or Steel–Dwass test, p < 0.05)

Differences in means among provenances were examined by Kruskal–Wallis test.

51

Table 3. Estimation of slopes (β) and intercepts (α) for the relationships between log10transformed distance from tree apex (L) and hydraulically-weighted tracheid diameter (Dh) based

on the linear mixed models for three provenances (Yaku, Yanase, and Yoshino) of Cryptomeria

japonica.

Slope (β)

Intercept (α)

Yaku

0.070 (0.016) b

1.354 (0.012) a

Yanase

0.171 (0.023) a

1.272 (0.021) b

Yoshino

0.130 (0.022) a

1.292 (0.019) b

Values in parentheses represent standard errors.

Different letters indicate significant differences in parameters among provenances (p < 0.05).

52

Figure 1. Location (latitude and longitude), mean annual temperature, and mean annual precipitation

of the common garden of the present study (Wakayama Experimental Forest) and the native habitats

of three provenances (Yoshino, Yanase, and Yaku). The location of the native habitats of three

provenances shows the source location of each sapling planted in the common garden. The mean

annual temperature and precipitation were calculated from observations from 1985 to 2019 at the

nearest Japan Meteorological Agency weather station to that location.

53

Figure 2. Optical microscopic images of stained transverse sections of the xylem at the stem tips (a,

c, e) and bases (b, d, f) of three provenances of Cryptomeria japonica: Yaku (a, b), Yanase (c, d), and

Yoshino (e, f). All images are at the same magnification (bar = 500 µm). The pith is on the right side

in each image.

54

Figure 3. (a) Scaling relationships between log10-transformed hydraulically-weighted tracheid

diameter (Dh) and distance from tree apex (L) for three provenances (Yaku, Yanase, and Yoshino) of

Cryptomeria japonica. Solid, dashed, and dotted lines indicate the trends for Yaku, Yanase, and

Yoshino, respectively. On average, the provenance with a steeper slope (β) had a longer crown depth

(CD) (R2 = 0.999, p = 0.021, n = 3). (b) The same data in non-transfomed axes. The vertical solid,

dashed, and dotted lines indicate the aveage CD (see also Table 1) for Yaku, Yanase, and Yoshino,

respectively. Each symbol is a composite of multiple individuals (n = 3 for each provenance).

55

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る