リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Truly chiral phonons in α-HgS」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Truly chiral phonons in α-HgS

石戸 享佑 Mao Huiling ZHANG TIANTIAN 村上 修一 佐藤 琢哉 Kyosuke Ishito Huiling Mao Tiantian Zhang Shuichi Murakami Takuya Satoh 東京工業大学 DOI:https://doi.org/10.1038/s41567-022-01790-x

2023.01

概要

Chirality is a manifestation of the asymmetry inherent in nature. It has been defned as the symmetry breaking of the parity of static objects, and the defnition was extended to dynamic motion such that true and false chiralities were distinguished. Recently, rotating, yet not propagating, atomic motions were predicted and observed in two-dimensional materials, and they were referred to as ‘chiral phonons’. A natural development would be the discovery of truly chiral phonons that propagate while rotating in three-dimensional materials. Here we used circularly polarized Raman scattering and frst-principles calculations to identify truly chiral phonons in chiral bulk crystals. This approach enabled us to determine the chirality of a crystal in a non-contact and non-destructive manner. In addition, we demonstrated that the law of the conservation of pseudo-angular momentum holds between circularly polarized photons and chiral phonons. These fndings are expected to help develop ways for transferring the pseudo-angular momentum from photons to electron spins via propagating chiral phonons in opto-phononic-spintronic devices.

この論文で使われている画像

参考文献

1. Kelvin, W. T. B. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light (Cambridge Univ. Press, 1904).

2. Cahn, R. S., Ingold, C. & Prelog, V. Specification of molecular chirality. Angew. Chem. Int. Ed. Engl. 5, 385–415 (1966).

3. Barron, L. D. Molecular Light Scattering and Optical Activity 2nd edn (Cambridge Univ. Press, 2004).

4. Božovic, I. Possible band-structure shapes of quasi-one-dimensional solids. Phys. Rev. B 29, 6586–6599 (1984).

5. Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).

6. Chen, H., Zhang, W., Niu, Q. & Zhang, L. Chiral phonons in two-dimensional materials. 2D Mater. 6, 012002 (2019).

7. Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).

8. Kishine, J., Ovchinnikov, A. S. & Tereshchenko, A. A. Chirality-induced phonon dispersion in a noncentrosymmetric micropolar crystal. Phys. Rev. Lett. 125, 245302 (2020).

9. Pine, A. S. & Dresselhaus, G. Linear wave-vector shifts in the Raman spectrum of α-quartz and infrared optical activity. Phys. Rev. 188, 1489–1496 (1969).

10. Zallen, R., Lucovsky, G., Taylor, W., Pinczuk, A. & Burstein, E. Lattice vibrations in trigonal HgS. Phys. Rev. B 1, 4058–4070 (1970).

11. Pine, A. S. & Dresselhaus, G. Raman spectra and lattice dynamics of tellurium. Phys. Rev. B 4, 356–371 (1971).

12. Grimsditch, M. H., Ramdas, A. K., Rodriguez, S. & Tekippe, V. J. Piezospectroscopy of Raman lines exhibiting linear wave-vector dependence: α-quartz. Phys. Rev. B 15, 5869–5876 (1977).

13. Imaino, W., Simpson, C. T., Becker, W. M. & Ramdas, A. K. Resonant Raman efect in cinnabar. Phys. Rev. B 21, 634–642 (1980).

14. Garasevich, S. G., Slobodyanyuk, A. V. & Yanchuk, Z. Z. Anomalous angular dependence of E-mode splitting in Raman spectra of ZnP2 and CdP2 uniaxial gyrotropic crystals caused by spatial dispersion. Phys. Lett. A 197, 238–242 (1995).

15. Pinan-Lucarre, J.-P., Ouillon, R. & Ranson, P. Linear wave vector dependence of low-frequency Raman modes in two uniaxial gyrotropic quartz-type materials: α-GaPO4 and α-AlPO4. Chem. Phys. Lett. 302, 164–170 (1999).

16. Cardona, M. et al. Electronic and phononic properties of cinnabar: ab initio calculations and some experimental results. Phys. Rev. B 82, 085210 (2010).

17. Aurivillius, K. L. On the crystal structure of cinnabar. Acta Chem. Scand. 4, 1413–1436 (1950).

18. Glazer, A. M. & Stadnicka, K. On the origin of optical activity in crystal structures. J. Appl. Cryst. 19, 108–122 (1986).

19. Higgs, P. W. The vibration spectra of helical molecules: infra-red and Raman selection rules, intensities and approximate frequencies. Proc. Math. Phys. Eng. Sci. 220, 472–485 (1953).

20. Nusimovici, M. A. & Gorre, G. Phonons in cinnabar. Phys. Rev. B 8, 1648–1656 (1973).

21. Bond, W. L., Boyd, G. D. & Carter Jr, H. L. Refractive indices of HgS (cinnabar) between 0.62 and 11 μ. J. Appl. Phys. 38, 4090–4091 (1967).

22. Nussbaum, A. & Hager, R. J. Galvanomagnetic coeficients of single-crystal tellurium. Phys. Rev. 123, 1958–1964 (1961).

23. Yariv, A. & Yeh, P. Photonics: Optical Electronics in Modern Communications 6th edn (Oxford Univ. Press, 2006).

24. Bloembergen, N. Conservation laws in nonlinear optics. J. Opt. Soc. Am. 70, 1429–1436 (1980).

25. Tatsumi, Y., Kaneko, T. & Saito, R. Conservation law of angular momentum in helicity-dependent Raman and Rayleigh scattering. Phys. Rev. B 97, 195444 (2018).

26. Chen, H., Wu, W., Zhu, J., Yang, S. A. & Zhang, L. Propagating chiral phonons in three-dimensional materials. Nano Lett. 21, 3060–3065 (2021).

27. Zhang, T. & Murakami, S. Chiral phonons and pseudoangular momentum in nonsymmorphic systems. Phys. Rev. Res. 4, L012024 (2022).

28. Teuchert, W. D. & Geick, R. Symmetry of lattice vibrations in selenium and tellurium. Phys. Stat. Sol. B 61, 123–136 (1974).

29. Zhang, T. et al. Double-Weyl phonons in transition-metal monosilicides. Phys. Rev. Lett. 120, 016401 (2018).

30. Li, H. et al. Observation of a chiral wave function in the twofold-degenerate quadruple Weyl system BaPtGe. Phys. Rev. B 103, 184301 (2021).

参考文献をもっと見る