リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「リジン長鎖アシル化修飾を介した転写因子TEADの機能制御機構に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

リジン長鎖アシル化修飾を介した転写因子TEADの機能制御機構に関する研究

則次, 恒太 東京大学 DOI:10.15083/0002002071

2021.10.04

概要

1. 序論
 真核⽣物において、多くのタンパク質は翻訳後修飾を受けることでその機能や局在が制御されている。代表的な修飾にリジンアセチル化があり、アセチル化酵素KATと脱アセチル化酵素KDACによって可逆的に制御されている。このKDACの⼀部が多様なリジンアシル化修飾を基質とできることが明らかとなってきており、そのなかでリジン残基に⻑鎖脂質修飾であるミリストイル化が起こることが明らかになった。⼀⽅でこの新しい修飾を受けるタンパク質はこれまでほとんど⾒つかっていない。以前、共同研究者が独⾃に⾏ったランダムプロテオーム解析によって、がん抑制経路の1つであるHippo経路の制御下にある転写因⼦TEADのリジン残基がミリストイル化、およびパルミトイル化を受けていることを⾒いだされていた。Hippo経路ではTEADの転写共役因⼦であるYAP、あるいはそのパラログであるTAZのリン酸化を介した制御機構が知られている。さらに、最近になってTEADのシステイン残基が⾃⼰パルミトイル化を受けており、このパルミトイル化がYAP/TAZとの結合とTEAD⾃⾝の熱的安定性に重要であることが報告された。しかし、私たちが⾒いだしたリジン残基における⻑鎖アシル化についてはその詳細が⼀切不明である。
 本研究は、私たちが新規リジン⻑鎖アシル化タンパク質として⾒いだしたTEADのアシル化制御機構、およびアシル化修飾が担う⽣理的な機能を明らかにすることを⽬的とした。

2. TEADリジンアシル化修飾の検出系の確⽴
 リジン⻑鎖アシル化の検出⽅法として代表的なクリックケミストリーの反応であるHuisgen環化付加反応を利⽤したラベル⽅法が⽤いられている。これは末端がアルキンの脂肪酸類縁体を細胞に取り込ませ、ビオチンや蛍光標識したアジドと反応させることでアシル化修飾タンパクをラベルする⽅法である。しかし、この⽅法は脂肪酸類縁体を細胞に添加する必要があるため、⽣理的な条件下での修飾状態を検出できないという⽋点がある。
 そこで、⽣理的な状態でのTEADのリジン⻑鎖アシル化修飾状態を解析するために、ミリストイル化リジンを含むTEAD由来のペプチドを抗原にしてモノクローナル抗体を作製した。作製した抗体の特異性を、システインの⻑鎖アシル化ペプチドなどの種々のペプチドを⽤いたELISAアッセイにより検討したところ、リジン残基の⻑鎖アシル化を特異的に認識しており、さらに他の配列に対してTEAD由来の配列を極めて選択的に認識していた(図1)。この抗体を⽤いたウェスタンブロットティング法では哺乳類に存在する4種類のTEADファミリー全てを検出でき、またアシル化されるリジン残基をアルギニンに置換した変異体(KR変異体)は認識しなかった。以上の結果から、作製した抗体はリジン⻑鎖アシル化されたTEADを特異的に認識することが分かった。

3. TEADのリジン⻑鎖アシル化修飾機構の検討
 TEADのシステイン残基は⾮酵素的に⾃⼰パルミトイル化されることが報告された。そこでTEADのリジン残基も⾃⼰アシル化されるかどうかを検討するため、⼤腸菌から精製したリコンビナントTEADタンパク質とミリストイルCoAを混合し、ウェスタンブロッティング法にてアシル化状態を検出した。その結果、アシルCoA存在下においてTEADのリジンアシル化が亢進しており、リジンアシル化もまた⾃⼰アシル化であることが⽰唆された(図2)。興味深いことに、⾃⼰アシル化が報告されているシステイン残基をセリンに置換した変異体(CS変異体)ではリジンアシル化が起こっていなかった。これはリコンビナントタンパクだけでなく、哺乳類細胞内に発現させた場合でも同様であった。報告されているTEADのX線結晶構造をもとに各アミノ酸残基の位置関係を検討したところ、パルミトイル化されるシステイン残基と私たちが⾒いだしたアシル化されるリジン残基が隣接していることが分かった。これらの結果から、TEADはシステイン残基からリジン残基へ分⼦内転移によってリジン⾃⼰アシル化をしている可能性が⽰唆された。
 また、TEADのリジン脱アシル化機構についても検討した。TEADはYAP/TAZと共に転写コリプレッサー複合体であるNuRD(nucleosome remodeling and deacetylating)複合体と相互作⽤をすることが報告されており、このNuRD複合体の構成因⼦にHDAC1,HDAC2があることから亜鉛イオン依存的なHDACファミリーに着⽬した。免疫沈降法で確認したところ、実際にTEAD1とHDAC1の相互作⽤が⽰唆された。しかし、HDAC1が脱⻑鎖アシル化酵素活性を有しているかどうかは不明であったため、クマリン化ペプチドを⽤いたin vitroの脱アシル化アッセイを⾏った。その結果、確かにHDAC1はミリストイル化リジンを基質とした脱⻑鎖アシル化活性を有していることが分かった。これらのことから、HDAC1がTEADのリジン脱⻑鎖アシル化に関与している可能性が⽰唆された。

4. TEADリジン⻑鎖アシル化修飾の機能の検討
 報告されたTEADのパルミトイル化システイン残基および私たちが⾒いだしたアシル化リジン残基はTEADファミリー間および異種間で極めてよく保存されており、いずれもYAP結合ドメイン中に存在していた。さらに、TEADのシステイン残基のパルミトイル化がYAPとの結合に重要であるとの報告から、リジン残基の⻑鎖アシル化もまたYAPとの結合に重要であると考えられた。そこで、NanoBiT(NanoLuc Binary Technology)を利⽤した⽣細胞内での結合評価系を構築し、リジンアシル化修飾がYAPとの結合に与える影響を検討した。その結果、KR変異体においてYAPとの結合が有意に減少していることを⾒いだした。YAPとの結合に影響することが⽰唆されたため、この結合を介したTEADの転写活性にもまたTEADのリジンアシル化が影響していることが考えられる。そこでTEADの転写活性を評価するレポーターアッセイを⾏った。内在性のTEADの影響を排除するためにGAL4のDNA結合ドメインとTEAD1を融合した融合タンパクとGAL4の結合配列直下にルシフェラーゼを配したレポーター遺伝⼦を利⽤する系を⽤いた。その結果、野⽣型と⽐較してKR変異体において転写活性が有意に減少していた(図3)。以上のことからリジン⻑鎖アシル化はYAP/TAZとの結合を介してTEADの完全な転写活性に必要であることが⽰唆された。

5. まとめ
 本研究により、転写因⼦TEADが新規のリジン⻑鎖アシル化タンパク質として⾒いだされた。本研究ではリジン残基におけるアシル化修飾の修飾状態を詳細に検討するため、TEADのリジン⻑鎖アシル化修飾を極めて選択的に認識する抗体の作製に成功した。これまでリジン⻑鎖アシル化を検出するためにはアルキン脂肪酸を添加する必要があったが、この抗体によって初めて⽣理的な条件下でTEADのリジン⻑鎖アシル化を検出することが可能となった。また、TEADはシステインの⾃⼰アシル化が報告されていたが、本研究において作製した抗体はリジンのアシル化のみを検出することが可能であり、この抗体を⽤いることでTEADはシステインからさらに分⼦内転移によって近接しているリジン残基をアシル化するリジン⾃⼰アシル化活性を有している可能性が⾒いだされた。さらにこのTEADのリジンアシル化は転写共役因⼦YAPとの結合を補強することで完全な転写活性を発揮するのに必要であることが⽰唆された。
 YAP/TAZおよびTEADの転写活性の異常な亢進はがん化に寄与することが知られており、実際にいくつかのがん細胞においてTEADの活性が亢進していることが⾒いだされている。本研究はTEADの活性を制御する新たな分⼦機構を明らかにしただけでなく、TEADのリジン⻑鎖アシル化を標的とした新しいがん治療戦略を⽰すことにも貢献すると期待される。

この論文で使われている画像

参考文献

1. Phillips, D. M. The presence of acetyl groups of histones. Biochem. J 87, 258–263. (1963).

2. Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. 51, 786–794 (1964).

3. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

4. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

5. Jones, D. O., Cowell, I. G. & Singh, P. B. Mammalian chromodomain proteins: Their role in genome organisation and expression. BioEssays 22, 124–137 (2000).

6. Agalioti, T., Chen, G. & Thanos, D. Deciphering the transcriptional histone acetylation code for a human gene. Cell 111, 381–392 (2002).

7. Bedel, R. et al. Effective functional maturation of invariant natural killer T cells is constrained by negative selection and T-cell antigen receptor affinity. Proc Natl Acad Sci U S A 111, E119-28 (2014).

8. Choudhary, C. et al. Lysine acetylation targets protein complexes and co- regulates major cellular functions. Science 325, 834–840 (2009).

9. Glozak, M. A., Sengupta, N., Zhang, X. & Seto, E. Acetylation and deacetylation of non-histone proteins. Gene 363, 15–23 (2005).

10. Yang, X. J. & Seto, E. Lysine Acetylation: Codified Crosstalk with Other Posttranslational Modifications. Mol. Cell 31, 449–461 (2008).

11. Candido, E. P., Reeves, R. & Davie, J. R. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14, 105–13 (1978).

12. Yoshida, M., Horinouchi, S. & Beppu, T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17, 423–430 (1995).

13. Kijima, M., Yoshida, M., Sugita, K., Horinouchi, S. & Beppu, T. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J. Biol. Chem. 268, 22429–22435 (1993).

14. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science (80-. ). 272, 408–411 (1996).

15. Verdin, E. & Ott, M. 50 Years of Protein Acetylation: From Gene Regulation To Epigenetics, Metabolism and Beyond. Nat. Rev. Mol. Cell Biol. 1–7 (2014). doi:10.1038/nrm3931

16. YOSHIDA, M., KUDO, N., KOSONO, S. & ITO, A. Chemical and structural biology of protein lysine deacetylases. Proc. Japan Acad. Ser. B 93, 297–321 (2017).

17. de Ruijter, A. J. M., van Gennip, A. H., Caron, H. N., Kemp, S. & van Kuilenburg, A. B. P. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737–49 (2003).

18. Jepsen, K. & Rosenfeld, M. G. Biological roles and mechanistic actions of co- repressor complexes. J. Cell Sci. 115, 689–98 (2002).

19. Imai, S. I., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

20. Schultz, B. E. et al. Kinetics and comparative reactivity of human class I and class IIb histone deacetylases. Biochemistry 43, 11083–11091 (2004).

21. Haigis, M. C. & Guarente, L. P. Mammalian sirtuins - Emerging roles in physiology, aging, and calorie restriction. Genes Dev. 20, 2913–2921 (2006).

22. Tanner, K. G., Landry, J., Sternglanz, R. & Denu, J. M. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl. Acad. Sci. U. S. A. 97, 14178–82 (2000).

23. Sauve, A. A. et al. Chemistry of gene silencing: The mechanism of NAD+- dependent deacetylation reactions. Biochemistry 40, 15456–15463 (2001).

24. Frye, R. A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793–798 (2000).

25. Feige, J. N. & Johan, A. Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr. Opin. Cell Biol. 20, 303–309 (2008).

26. Verdin, E., Hirschey, M. D., Finley, L. W. S. & Haigis, M. C. Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling. Trends Biochem. Sci. 35, 669–675 (2010).

27. Liu, T. F., Vachharajani, V. T., Yoza, B. K. & McCall, C. E. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J. Biol. Chem. 287, 25758–25769 (2012).

28. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian Control of the NAD+ Salvage Pathway by CLOCK-SIRT1. Science (80-. ). 324, 654–657 (2009).

29. Schiedel, M., Robaa, D., Rumpf, T., Sippl, W. & Jung, M. The Current State of NAD+ -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Med. Res. Rev. 38, 147–200 (2018).

30. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002).

31. Witt, O., Deubzer, H. E., Milde, T. & Oehme, I. HDAC family: What are the cancer relevant targets? Cancer Lett 277, 8–21 (2009).

32. Minucci, S. & Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6, 38–51 (2006).

33. Eckschlager, T., Plch, J., Stiborova, M. & Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. 18, 1–25 (2017).

34. Chen, Y. et al. Lysine Propionylation and Butyrylation Are Novel Post- translational Modifications in Histones. Mol. Cell. Proteomics 6, 812–819 (2007).

35. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

36. Zhang, Z. et al. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 7, 58–63 (2011).

37. Dai, L. et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat. Chem. Biol. 10, 365–370 (2014).

38. Cheng, Z. et al. Molecular Characterization of Propionyllysines in Non-histone Proteins. Mol. Cell. Proteomics 8, 45–52 (2009).

39. Sabari, B. R. et al. Intracellular Crotonyl-CoA Stimulates Transcription through p300-Catalyzed Histone Crotonylation. Mol. Cell 58, 203–215 (2015).

40. Kaczmarska, Z. et al. Structure of p300 in complex with acyl-CoA variants. Nat. Chem. Biol. 13, 21–29 (2017).

41. Sabari, B. R., Zhang, D., Allis, C. D. & Zhao, Y. Metabolic regulation of gene expression through histone acylations. Nature Reviews Molecular Cell Biology 18, 90–101 (2017).

42. Ringel, A. E. & Wolberger, C. Structural basis for acyl-group discrimination by human Gcn5L2: Acta Crystallogr. Sect. D Struct. Biol. 72, 841–848 (2016).

43. Leemhuis, H., Packman, L. C., Nightingale, K. P. & Hollfelder, F. The human histone acetyltransferase P/CAF is a promiscuous histone propionyltransferase. ChemBioChem 9, 499–503 (2008).

44. Wagner, G. R. et al. Supplemental Information A Class of Reactive Acyl-CoA Species Reveals the Non-enzymatic Origins of Protein Acylation. Cell Metab. 25, 823–837.e8 (2017).

45. Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C. & Horikawa, I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623–35 (2005).

46. Haigis, M. C. et al. SIRT4 Inhibits Glutamate Dehydrogenase and Opposes the Effects of Calorie Restriction in Pancreatic β Cells. Cell 126, 941–954 (2006).

47. Du, J. et al. Sirt5 Is a NAD-Dependent Protein Lysine Demalonylase and Desuccinylase. Science (80-. ). 334, 806–809 (2011).

48. Jiang, H. et al. SIRT6 regulates TNF-α secretion through hydrolysis of long- chain fatty acyl lysine. Nature 496, 110–113 (2013).

49. Mathias, R. A. et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159, 1615–1625 (2014).

50. Tong, Z. et al. SIRT7 Is an RNA-Activated Protein Lysine Deacylase. ACS Chem. Biol. 12, 300–310 (2017).

51. Feldman, J. L., Baeza, J. & Denu, J. M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by Mammalian Sirtuins. J. Biol. Chem. 288, 31350–31356 (2013).

52. Feldman, J. L. et al. Kinetic and structural basis for Acyl-group selectivity and NAD+ dependence in sirtuin-catalyzed deacylation. Biochemistry 54, 3037–3050 (2015).

53. Bao, X. et al. Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. Elife 3, 1–18 (2014).

54. Madsen, A. S. & Olsen, C. A. Profiling of substrates for zinc-dependent lysine deacylase enzymes: HDAC3 exhibits decrotonylase activity in vitro. Angew. Chemie - Int. Ed. 51, 9083–9087 (2012).

55. Aramsangtienchai, P. et al. HDAC8 Catalyzes the Hydrolysis of Long Chain Fatty Acyl Lysine. ACS Chem. Biol. 11, 2685–2692 (2016).

56. Kutil, Z. et al. Histone Deacetylase 11 Is a Fatty-Acid Deacylase. ACS Chem. Biol. 13, 685–693 (2018).

57. Moreno-Yruela, C., Galleano, I., Madsen, A. S. & Olsen, C. A. Histone Deacetylase 11 Is an ε-N-Myristoyllysine Hydrolase. Cell Chem. Biol. 25, 849– 856.e8 (2018).

58. Ito, A. et al. The subcellular localization and activity of cortactin is regulated by acetylation and interaction with Keap1. Sci. Signal. 8, ra120-ra120 (2015).

59. Kudo, N., Ito, A., Arata, M., Nakata, A. & Yoshida, M. Identification of a novel small molecule that inhibits deacetylase but not defatty-acylase reaction catalysed by SIRT2. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170070 (2018).

60. Stevenson, F. T., Bursten, S. L., Fanton, C., Locksley, R. M. & Lovett, D. H. The 31-kDa precursor of interleukin 1 alpha is myristoylated on specific lysines within the 16-kDa N-terminal propiece. Proc. Natl. Acad. Sci. U. S. A. 90, 7245– 9 (1993).

61. Stevenson, F. T., Bursten, S. L., Locksley, R. M. & Lovett, D. H. Myristyl acylation of the tumor necrosis factor alpha precursor on specific lysine residues. J. Exp. Med. 176, 1053–62 (1992).

62. Xiao, J. H. et al. One cell-specific and three ubiquitous nuclear proteins bind in vitro to overlapping motifs in the domain B1 of the SV40 enhancer. EMBO J. 6, 3005–13 (1987).

63. Davidson, I., Xiao, J. H., Rosales, R., Staub, A. & Chambon, P. The HeLa cell protein TEF-1 binds specifically and cooperatively to two SV40 enhancer motifs of unrelated sequence. Cell 54, 931–942 (1988).

64. Anbanandam, A. et al. Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain. Proc. Natl. Acad. Sci. 103, 17225–30 (2006).

65. Tian, W., Yu, J., Tomchick, D. R., Pan, D. & Luo, X. Structural and functional analysis of the YAP-binding domain of human TEAD2. Proc. Natl. Acad. Sci. 107, 7293–7298 (2010).

66. Halder, G. et al. The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in Drosophila. Genes Dev. 12, 3900–3909 (1998).

67. Simmonds, A. J. et al. Molecular interactions between Vestigial and Scalloped promote wing formation in Drosophila. Genes Dev. 12, 3815–3820 (1998).

68. Wu, J., Duggan, A. & Chalfie, M. Inhibition of touch cell fate by egl-44 and egl- 46 in C. elegans. Genes Dev. 15, 789–802 (2001).

69. Sawada, A. et al. Redundant Roles of Tead1 and Tead2 in Notochord Development and the Regulation of Cell Proliferation and Survival. Mol. Cell. Biol. 28, 3177–3189 (2008).

70. Andrianopoulos, A. & Timberlake, W. E. The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol. Cell. Biol. 14, 2503–2515 (1994).

71. Gavrias, V., Andrianopoulos, A., Gimeno, C. J. & Timberlake, W. E. Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol. Microbiol. 19, 1255–1263 (1996).

72. Schweizer, A., Rupp, S., Taylor, B. N., Röllinghoff, M. & Schröppel, K. The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol. Microbiol. 38, 435–445 (2000).

73. Lin, K. C., Park, H. W. & Guan, K.-L. Regulation of the Hippo Pathway Transcription Factor TEAD. Trends Biochem. Sci. 42, 862–872 (2017).

74. Azakie, A., Larkin, S. B., Farrance, I. K., Grenningloh, G. & Ordahl, C. P. DTEF-1, a novel member of the transcription enhancer factor-1 (TEF-1) multigene family. J. Biol. Chem. 271, 8260–8265 (1996).

75. Jacquemin, P., Martial, J. A. & Davidson, I. Human TEF-5 is preferentially expressed in placenta and binds to multiple functional elements of the human chorionic somatomammotropin-B gene enhancer. J. Biol. Chem. 272, 12928– 12937 (1997).

76. Jacquemin, P., Hwang, J. J., Martial, J. A., Dollé, P. & Davidson, I. A novel family of developmentally regulated mammalian transcription factors containing the TEA/ATTS DNA binding domain. J. Biol. Chem. 271, 21775–21785 (1996).

77. Kaneko, K. J., Cullinan, E. B., Latham, K. E. & DePamphilis, M. L. Transcription factor mTEAD-2 is selectively expressed at the beginning of zygotic gene expression in the mouse. Development 124, 1963–1973 (1997).

78. Chen, Z., Friedrich, G. A. & Soriano, P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 8, 2293–2301 (1994).

79. Kaneko, K. J., Kohn, M. J., Liu, C. & DePamphilis, M. L. Transcription factor TEAD2 is involved in neural tube closure. genesis 45, 577–587 (2007).

80. Zhao, B. et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22, 1962–71 (2008).

81. Zhang, H. et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J. Biol. Chem. 284, 13355–13362 (2009).

82. Lai, D., Ho, K. C., Hao, Y. & Yang, X. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res. 71, 2728–2738 (2011).

83. Lian, I. et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 24, 1106–1118 (2010).

84. Ota, M. & Sasaki, H. Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135, 4059–69 (2008).

85. Lamar, J. M. et al. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Natl. Acad. Sci. U. S. A. 109, E2441-50 (2012).

86. Zhou, Y. et al. The TEAD Family and Its Oncogenic Role in Promoting Tumorigenesis. Int. J. Mol. Sci. 17, 138 (2016).

87. Justice, R. W., Zilian, O., Woods, D. F., Noll, M. & Bryant, P. J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 9, 534–46 (1995).

88. Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–63 (1995).

89. Tapon, N. et al. salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467–78 (2002).

90. Kango-Singh, M. et al. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129, 5719–30 (2002).

91. Wu, S., Huang, J., Dong, J. & Pan, D. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445–456 (2003).

92. Jia, J., Zhang, W., Wang, B., Trinko, R. & Jiang, J. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev. 17, 2514–9 (2003).

93. Pantalacci, S., Tapon, N. & Léopold, P. The salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat. Cell Biol. 5, 921–927 (2003).

94. Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–67 (2003).

95. Lai, Z. C. et al. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120, 675–685 (2005).

96. Pan, D. The Hippo Signaling Pathway in Development and Cancer. Dev. Cell 19, 491–505 (2010).

97. Wei, X., Shimizu, T. & Lai, Z. C. Mob as tumor suppressor is activated by Hippo kinase for growth inhibition in Drosophila. EMBO J. 26, 1772–1781 (2007).

98. Wu, S., Liu, Y., Zheng, Y., Dong, J. & Pan, D. The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev. Cell 14, 388–398 (2008).

99. Zhang, L. et al. The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev. Cell 14, 377–387 (2008).

100. Goulev, Y. et al. SCALLOPED Interacts with YORKIE, the Nuclear Effector of the Hippo Tumor-Suppressor Pathway in Drosophila. Curr. Biol. 18, 435–441 (2008).

101. Lei, Q.-Y. et al. TAZ Promotes Cell Proliferation and Epithelial-Mesenchymal Transition and Is Inhibited by the Hippo Pathway. Mol. Cell. Biol. 28, 2426– 2436 (2008).

102. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).

103. Zhao, B., Li, L., Tumaneng, K., Wang, C. Y. & Guan, K. L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev. 24, 72–85 (2010).

104. Kim, M., Kim, T., Johnson, R. L. & Lim, D.-S. Transcriptional Co-repressor Function of the Hippo Pathway Transducers YAP and TAZ. Cell Rep. 11, 270– 282 (2015).

105. Wada, K.-I., Itoga, K., Okano, T., Yonemura, S. & Sasaki, H. Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907–3914 (2011).

106. Zhao, B. et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 26, 54–68 (2012).

107. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179– 183 (2011).

108. Johnson, R. & Halder, G. The two faces of Hippo: Targeting the Hippo pathway for regenerative medicine and cancer treatment. Nature Reviews Drug Discovery 13, 63–79 (2014).

109. Yu, F.-X., Zhao, B. & Guan, K.-L. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell 163, 811–828 (2015).

110. Moroishi, T., Hansen, C. G. & Guan, K.-L. The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer 15, 73–79 (2015).

111. Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780–791 (2012).

112. Lee, Y. et al. Dishevelled has a YAP nuclear export function in a tumor suppressor context-dependent manner. Nat. Commun. 9, 1–16 (2018).

113. Cordenonsi, M. et al. The hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759–772 (2011).

114. Sorrentino, G. et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16, 357–366 (2014).

115. Enzo, E. et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 34, 1349–70 (2015).

116. Azzolin, L. et al. YAP/TAZ Incorporation in the β-Catenin Destruction Complex Orchestrates the Wnt Response. Cell 158, 157–170 (2014).

117. Mao, B. et al. SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma. Oncogene 33, 1468–1474 (2014).

118. Oudhoff, M. J. et al. Control of the Hippo Pathway by Set7-Dependent Methylation of Yap. Dev. Cell 26, 188–194 (2013).

119. Zanconato, F., Cordenonsi, M. & Piccolo, S. Review YAP / TAZ at the Roots of Cancer. Cancer Cell 29, 783–803 (2016).

120. Bateman, A. et al. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017).

121. Motohashi, K. A simple and efficient seamless DNA cloning method using SLiCE from Escherichia coli laboratory strains and its application to SLiP site- directed mutagenesis. BMC Biotechnol. 15, 47 (2015).

122. Okegawa, Y. & Motohashi, K. A simple and ultra-low cost homemade seamless ligation cloning extract (SLiCE) as an alternative to a commercially available seamless DNA cloning kit. Biochem. Biophys. reports 4, 148–151 (2015).

123. Chan, P. et al. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat. Chem. Biol. 12, 282–9 (2016).

124. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. Engl. 40, 2004– 2021 (2001).

125. Besanceney-Webler, C. et al. Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew. Chem. Int. Ed. Engl. 50, 8051–6 (2011).

126. Noland, C. L. et al. Palmitoylation of TEAD Transcription Factors Is Required for Their Stability and Function in Hippo Pathway Signaling. Structure 24, 179– 186 (2016).

127. Ayer, D. E. Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol. 9, 193–8 (1999).

128. Wegener, D., Wirsching, F., Riester, D. & Schwienhorst, A. A fluorogenic histone deacetylase assay well suited for high-throughput activity screening. Chem. Biol. 10, 61–8 (2003).

129. Ko, P. & Dixon, S. J. Protein palmitoylation and cancer. EMBO Rep. 19, e46666 (2018).

130. Dunphy, J. T. & Linder, M. E. Signalling functions of protein palmitoylation. Biochim. Biophys. Acta 1436, 245–61 (1998).

131. Basar, T., Havlíček, V., Bezoušková, S., Hackett, M. & Šebo, P. Acylation of lysine 983 is sufficient for toxin activity of Bordetella pertussis adenylate cyclase. Substitutions of alanine 140 modulate acylation site selectivity of the toxin acyltransferase CyaC. J. Biol. Chem. 276, 348–354 (2001).

132. Mattoo, S. & Cherry, J. D. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin. Microbiol. Rev. 18, 326–82 (2005).

133. Zhou, Y. et al. Nε-Fatty acylation of Rho GTPases by a MARTX toxin effector. Science 358, 528–531 (2017).

134. Li, Z. et al. Structural insights into the YAP and TEAD complex. Genes Dev. 24, 235–240 (2010).

135. R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/. R Foundation for Statistical Computing, Vienna, Austria (2017). doi:10.1007/978-3-540-74686-7

136. Jing, H. et al. SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a. Elife 6, 1–32 (2017).

137. Zhang, X., Spiegelman, N. A., Nelson, O. D., Jing, H. & Lin, H. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. Elife 6, 1–16 (2017).

138. Elisi, G. et al. Repurposing of Drugs Targeting YAP-TEAD Functions. Cancers (Basel). 10, 329 (2018).

139. Pobbati, A. V et al. Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Article Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Strategy. Struct. Des. 23, 2076–2086 (2015).

参考文献をもっと見る