リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Profiling of nascent peptide sequences that regulate peptidyl-tRNA drop-off and investigation on expression of proteins lacking the N-terminus due to the drop-off」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Profiling of nascent peptide sequences that regulate peptidyl-tRNA drop-off and investigation on expression of proteins lacking the N-terminus due to the drop-off

田島, 研也 東京大学 DOI:10.15083/0002004750

2022.06.22

概要

Introduction (Chapter 1)
Ribosomal translation reaction elongates polypeptide chains by repeating accommodation of aminoacyl-tRNA delivered by EF-Tu into ribosomal A site, peptidyl transfer of a nascent peptide on P-site peptidyl-tRNA onto A-site aminoacyl-tRNA, and translocation mediated by EF-G in which A-site peptidyltRNA and P-site deacyl-tRNA move into P site and A site, respectively (Figure). Although short peptidyltRNA accidentally drops off from the translating ribosome, the actual mechanisms and molecules that induce peptidyl-tRNA drop-off have remained elusive. It is believed that mRNA contexts or translation factors such as EF-G are involved in the peptidyl-tRNA drop-off. Ribosome stalling is one of the plausible causes of peptidyl-tRNA drop-off. Certain nascent peptides could induce ribosome stalling via formation of inactive state for peptidyl transfer by interaction with the ribosome exit tunnel in which nascent peptides penetrate. A stretch of proline residues in nascent peptides also causes ribosome stalling due to its poor peptidyl donor and acceptor ability. The strength of stalling depends on the number of prolines and neighboring amino acid residues. In former studies, strength of ribosome stalling was investigated on up to 1600 kinds of native proteins containing consecutive proline motifs.

In this PhD study, I comprehensively profiled 8420 kinds of nascent peptide sequences containing consecutive prolines against regulation of peptidyl-tRNA drop-off utilizing mRNA display-based approach. By analyzing broader sequence coverage than the former studies, it was revealed that the peptidyl-tRNA drop- off occurs depending on the nascent peptide sequences containing the proline stretch. Finally, in order to investigate the peptidyl-tRNA drop-off in E. coli endogenous translation system, I expressed and purified E. coli proteins containing consecutive prolines, which were sequenced by LC-ESI MS/MS after protease digestion. As a result, the evidence of peptidyl-tRNA drop-off was obtained.

Results and Discussion
Comprehensive profiling of nascent peptide sequence on peptidyl-tRNA drop-off (chapter 2)
In order to comprehensively analyze the effect of nascent peptide sequences containing the proline stretch on peptidyl-tRNA drop-off, I performed saturation mutagenesis in nascent peptides utilizing Random non-standard Peptide Integrated Discovery (RaPID) system. I constructed an mRNA library having randomized NNN codons to express a library of randomized peptide sequences. Here shows the profiling strategy. The mRNA library was ligated with a puromycin linker, translated into a N-terminally biotinylated peptide library in reconstituted cell-free translation system combined with genetic code reprogramming, conjugated to the corresponding mRNA via puromycin, and reverse-transcribed to generate peptide-mRNAcDNA conjugate. The peptide-mRNA-cDNA conjugates induced peptidyl-tRNA drop-off was selectively removed, other N-terminally biotinylated peptide-mRNA-cDNA were recovered by streptavidin, and analyzed by next-generation sequencing. Sequencing data were converted to the frequency of a peptide sequence in the input library or in a library recovered, which were interpreted as enrichment of the frequency of a peptide sequence, indicating strength of peptidyl-tRNA drop-off. As a result, the peptide sequence-dependent regulation of peptidyl-tRNA drop-off was observed. In order to confirm reliability of the profiling system, 17 kinds of representative peptides were individually expressed in vitro and quantified by LC-ESI MS. Good correlation was obtained between deep sequencing results and LC-ESI MS quantification, which demonstrated the reliability of the system. It was concluded that strength of peptidyl-tRNA drop-off was regulated by nascent peptide sequence.

Investigation of peptidyl-tRNA drop-off in in vitro synthesis of E. coli protein derivatives and in vivo expression of E. coli native proteins (Chapter 3)
Finally, I investigated the peptidyl-tRNA drop-off in in vitro and in vivo protein synthesis. I chose 16 E. coli proteins or putative proteins for expression. Preliminary, the short peptide fragments derived from the proteins were expressed in vitro, analyzed by tricine-SDS PAGE and LC-ESI MS. Peptidyl-tRNA drop-off was observed in expression of 6 peptide fragments among above 16 peptide fragments, 6 proteins were cloned into a plasmid, expressed in E. coli, purified, digested by proteases, and sequenced by LC-ESI MS/MS. As a result, the evidence of peptidyl-tRNA drop-off in the proteins synthesis was obtained.

Conclusion
Utilizing RaPID display, 8420 kinds of nascent peptide sequences were comprehensively profiled on strength of peptidyl-tRNA drop-off. The reliability of developed system was supported by quantification of expressed peptides by the independent method. To the best of my knowledge, this work covered the widest sequences for quantification of frequency of peptidyl-tRNA drop-off, which provide insight into regulation of peptidyl-tRNA drop-off depending on the peptide nascent sequences. In in vitro synthesis of protein derivatives and in vivo synthesis of a protein, peptidyl-tRNA drop-off was revealed as a new mode of abnormal translation event.

参考文献

1. Menninger, J. R. The accumulation as peptidyl-transfer RNA of isoaccepting transfer RNA families in Escherichia coli with Temparature-sensitive Peptidyl-transfer RNA Hydrplase. Jbc 253, (1978).

2. Woolstenhulme, C. J., Guydosh, N. R., Green, R. & Buskirk, A. R. High-Precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. Cell Rep. 11, 13–21 (2015).

3. Ito, K. & Chiba, S. Arrest Peptides: Cis -Acting Modulators of Translation. Annu. Rev. Biochem. 82, 171–202 (2013).

4. Schmeing, T. M. & Ramakrishnan, V. What recent ribosome structures have revealed about the mechanism of translation. Nature 461, 1234–1242 (2009).

5. Gualerzi, C. O. & Pon, C. L. Initiation of mRNA translation in bacteria: Structural and dynamic aspects. Cellular and Molecular Life Sciences 72, 4341–4367 (2015).

6. Olins, P. O. & Rangwala, S. H. A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli. J. Biol. Chem. 264, 16973–16976 (1989).

7. Shine, J. & Dalgarno, L. The 3’-Terminal Sequence of Escherichia coli 16S Ribosomal RNA: Complementarity to Nonsense Triplets and Ribosome Binding Sites. Proc. Natl. Acad. Sci. 71, 1342–1346 (1974).

8. Sengupta, J., Agrawal, R. K. & Frank, J. Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proc. Natl. Acad. Sci. U. S. A. 98, 11991–11996 (2001).

9. Kaminishi, T. et al. A Snapshot of the 30S Ribosomal Subunit Capturing mRNA via the Shine-Dalgarno Interaction. Structure 15, 289–297 (2007).

10. Rodnina, M. V & Wintermeyer, W. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Proc. Natl. Acad. Sci. 92, 1945–1949 (1995).

11. Howe, D. K. et al. Uniform Binding of Aminoacyl-tRNAs to Elongation Factor Tu by Thermodynamic Compensation. Science 294, 165–169 (2001).

12. Sanderson, L. E. & Uhlenbeck, O. C. Exploring the specificity of bacterial elongation factor Tu for different tRNAs. Biochemistry 46, 6194–6200 (2007).

13. Nissen, P. et al. The Structural Basis of Ribosome Activity in Peptide Bond Synthesis. Science 289, 920–931 (2000).

14. Rodnina, M. V., Savelsbergh, A., Katunin, V. I. & Wintermeyer, W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature (1997).

15. Tourigny, D. S., Fernández, I. S., Kelley, A. C. & Ramakrishnan, V. Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 340, (2013).

16. Moazed, D. & Noller, H. F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989).

17. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

18. Dunkle, J. A. et al. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332, 981–984 (2011).

19. Chen, C. et al. Single-Molecule Fluorescence Measurements of Ribosomal Translocation Dynamics. Mol. Cell 42, 367–377 (2011).

20. Lin, J., Gagnon, M. G., Bulkley, D. & Steitz, T. A. Conformational Changes of Elongation Factor G on the Ribosome during tRNA Translocation. Cell 160, 219–227 (2015).

21. Zhou, J., Lancaster, L., Donohue, J. P. & Noller, H. F. Crystal structures of EF-G - Ribosome complexes trapped in intermediate states of translocation. Science 340, (2013).

22. Gao, Y. G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009).

23. Cornish, P. V, Ermolenko, D. N., Noller, H. F. & Ha, T. Spontaneous Intersubunit Rotation in Single Ribosomes. Mol. Cell 30, 578–588 (2008).

24. Nakamura, Y., Ito, K. & Uno, M. A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature 403, 680–684 (2000).

25. Freistroffer, D. V., Pavlov, M. Y., MacDougall, J., Buckingham, R. H. & Ehrenberg, M. Release factor RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 16, 4126–4133 (1997).

26. Pavlov, M. Y., Freistroffer, D. V., MacDougall, J., Buckingham, R. H. & Ehrenberg, M. Fast recycling of Escherichia coli ribosomes requires both ribosome recycling factor (RRF) and release factor RF3. EMBO J. 16, 4134–4141 (1997).

27. Menninger, J. R. Peptidyl Transfer RNA Dissociates during Protein from Ribosomes of Escherichia coli. J. Biol. Chem. 251, 3392–3398 (1976).

28. Ontiveros, C., Gerardo Valadez, J., Hernández, J. & Guarneros, G. Inhibition of Escherichia coli protein synthesis by abortive translation of phage λ minigenes. J. Mol. Biol. 269, 167–175 (1997).

29. Cruz-Vera, L. R., Magos-Castro, M. A., Zamora-Romo, E. & Guarneros, G. Ribosome stalling and peptidyltRNA drop-off during translational delay at AGA codons. Nucleic Acids Res. 32, 4462–4468 (2004).

30. Karimi, R., Pavlov, M. Y., Heurgué-Hamard, V., Buckingham, R. H. & Ehrenberg, M. Initiation factors IF1 and IF2 synergistically remove peptidyl-tRNAs with short polypeptides from the P-site of translating Escherichia coli ribosomes. J. Mol. Biol. 281, 241–252 (1998).

31. Heurgué-Hamard, V. et al. Ribosome release factor RF4 and termination factor RF3 are involved in dissociation of peptidyl-tRNA from the ribosome. EMBO J. 17, 808–816 (1998).

32. Tenson, T., Lovmar, M. & Ehrenberg, M. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J. Mol. Biol. 330, 1005–14 (2003).

33. Menninger, J. R. Accumulation of peptidyl tRNA is lethal to Escherichia coli. J. Bacteriol. 137, 694–696 (1979).

34. Vogel, Z., Vogel, T., Zamir, A. & Elson, D. The Protection by 70S Ribosomes of N‐Acyl‐aminoacyl‐tRNA against Cleavage by Peptidyl‐tRNA Hydrolase and its Use to Assay Ribosomal Association. Eur. J. Biochem. 21, 582–592 (1971).

35. Das, G. & Varshney, U. Peptidyl-tRNA hydrolase and its critical role in protein biosynthesis. Microbiology 152, 2191–2195 (2006).

36. Atherly, A. G. & Menninger, J. R. Mutant E. coli strain with temperature sensitive peptidyltransfer RNA hydrolase. Nat. New Biol. 240, 245–246 (1972).

37. Tenson, T., Vega Herrera, J., Kloss, P., Guarneros, G. & Mankin, A. S. Inhibition of translation and cell growth by minigene expression. J. Bacteriol. 181, 1617–1622 (1999).

38. Schlünzen, F. et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413, 814–821 (2001).

39. Hansen, J. L. et al. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10, 117–128 (2002).

40. Kannan, K. et al. The general mode of translation inhibition by macrolide antibiotics. Proc. Natl. Acad. Sci. U. S. A. 111, 15958–15963 (2014).

41. Otaka, T. & Kaji, A. Release of (oligo)peptidyl tRNA from ribosomes by erythromycin A. Proc. Natl. Acad. Sci. U. S. A. 72, 2649–2652 (1975).

42. Dunkle, J. A., Xiong, L., Mankin, A. S. & Cate, J. H. D. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl. Acad. Sci. U. S. A. 107, 17152–17157 (2010).

43. Lovmar, M., Tenson, T. & Ehrenberg, M. Kinetics of Macrolide Action. J Biol Chem 279, 53506–53515 (2004).

44. Li, G. W., Oh, E. & Weissman, J. S. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484, 538–541 (2012).

45. Ikemura, T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 151, 389–409 (1981).

46. Brierley, I., Digard, P. & Inglis, S. C. Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement for an RNA pseudoknot. Cell 57, 537–547 (1989).

47. Namy, O., Moran, S. J., Stuart, D. I., Gilbert, R. J. C. & Brierley, I. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441, 244–247 (2006).

48. Huter, P. et al. Structural Basis for Polyproline-Mediated Ribosome Stalling and Rescue by the Translation Elongation Factor EF-P. Mol. Cell 68, 515-527.e6 (2017).

49. Katoh, T., Wohlgemuth, I., Nagano, M., Rodnina, M. V & Suga, H. Essential structural elements in tRNAPro for EF-P-mediated alleviation of translation stalling. Nat. Commun. 7, 1–12 (2016).

50. Doerfel, L. K. et al. EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339, 85–88 (2013).

51. Ude, S. et al. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339, 82–85 (2013).

52. Peil, L. et al. Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proc. Natl. Acad. Sci. 110, 15265–15270 (2013).

53. Starosta, A. L. et al. Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site. Nucleic Acids Res. 42, 10711–10719 (2014).

54. Nakatogawa, H. & Ito, K. Secretion monitor, secM, undergoes self-translation arrest in the cytosol. Mol. Cell 7, 185–192 (2001).

55. Seidelt, B. et al. Structural Insight into Nascent Polypeptide Chain–Mediated Translational Stalling. Science 1621, 1412–1415 (2009).

56. Vazquez-Laslop, N., Thum, C. & Mankin, A. S. Molecular Mechanism of Drug-Dependent Ribosome Stalling. Mol. Cell 30, 190–202 (2008).

57. Chiba, S. & Ito, K. Multisite Ribosomal Stalling: A Unique Mode of Regulatory Nascent Chain Action Revealed for MifM. Mol. Cell 47, 863–872 (2012).

58. Woolstenhulme, C. J. et al. Nascent peptides that block protein synthesis in bacteria. Proc. Natl. Acad. Sci. 110, E878–E887 (2013).

59. Chadani, Y., Niwa, T., Chiba, S., Taguchi, H. & Ito, K. Integrated in vivo and in vitro nascent chain profiling reveals widespread translational pausing. Proc. Natl. Acad. Sci. 113, E829–E838 (2016).

60. Chadani, Y. et al. Intrinsic Ribosome Destabilization Underlies Translation and Provides an Organism with a Strategy of Environmental Sensing. Mol. Cell 68, 528-539.e5 (2017).

61. Ramu, H. et al. Nascent Peptide in the Ribosome Exit Tunnel Affects Functional Properties of the A-Site of the Peptidyl Transferase Center. Mol. Cell 41, 321–330 (2011).

62. Muto, H. & Ito, K. Peptidyl-prolyl-tRNA at the ribosomal P-site reacts poorly with puromycin. Biochem. Biophys. Res. Commun. 366, 1043–1047 (2008).

63. Luo, Z. & Sachs, M. S. Role of an upstream open reading frame in mediating arginine-specific translational control in Neurospora crassa. J. Bacteriol. 178, 2172–2177 (1996).

64. Bhushan, S. et al. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. Mol. Cell 40, 138–146 (2010).

65. Gong, F., Ito, K., Nakamura, Y. & Yanofsky, C. The mechanism of tryptophan induction of tryptophanase operon expression: Tryptophan inhibits release factor-mediated cleavage of TnaC-peptidyl-tRNAPro. Proc. Natl. Acad. Sci. U. S. A. 98, 8997–9001 (2001).

66. Ramu, H., Mankin, A. & Vazquez-Laslop, N. Programmed drug-dependent ribosome stalling. Mol. Microbiol. 71, 811–824 (2009).

67. Hanson, G. & Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nature Reviews Molecular Cell Biology 19, 20–30 (2018).

68. Grantham, R., Gautier, C., Gouy, M., Mercier, R. & Pavé, A. Codon catalog usage and the genome hypothesis. Nucleic Acids Res. 8, 197 (1980).

69. Grantham, R., Gautier, C. & Gouy, M. Codon frequencies in 119 individual genes confirm corsistent choices of degenerate bases according to genome type. Nucleic Acids Res. 8, 1893–1912 (1980).

70. Buhr, F. et al. Synonymous Codons Direct Cotranslational Folding toward Different Protein Conformations. Mol. Cell 61, 341–351 (2016).

71. Presnyak, V. et al. Codon optimality is a major determinant of mRNA stability. Cell 160, 1111–1124 (2015).

72. Takyar, S., Hickerson, R. P. & Noller, H. F. mRNA helicase activity of the ribosome. Cell 120, 49–58 (2005).

73. Dayhuff, T. J., Atkins, J. F. & Gesteland, R. F. Characterization of ribosomal frameshift events by protein sequence analysis. J. Biol. Chem. 261, 7491–7500 (1986).

74. Blinkowa, A. L. & Walker, J. R. Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III γ subunit from within the τ subunit reading frame. Nucleic Acids Res. 18, 1725–1729 (1990).

75. Mejlhede, N., Atkins, J. F. & Neuhard, J. Ribosomal-1 frameshifting during decoding of Bacillus subtilis cdd occurs at the sequence CGA AAG. J. Bacteriol. 181, 2930–2937 (1999).

76. Kurian, L., Palanimurugan, R., Gödderz, D. & Dohmen, R. J. Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA. Nature 477, 490–494 (2011).

77. Caliskan, N., Katunin, V. I., Belardinelli, R., Peske, F. & Rodnina, M. V. Programmed -1 frameshifting by kinetic partitioning during impeded translocation. Cell 157, 1619–1631 (2014).

78. Meydan, S. et al. Programmed Ribosomal Frameshifting Generates a Copper Transporter and a Copper Chaperone from the Same Gene. Mol. Cell 65, 207–219 (2017).

79. Stewart, D. E., Sarkar, A. & Wampler, J. E. Occurrence and role ofcis peptide bonds in protein structures. J. Mol. Biol. 214, 253–260 (1990).

80. Zimmerman, S. S. & Scheraga, H. A. Stability of Cis, Trans, and Nonplanar Peptide Groups. Macromolecules 9, 408–416 (1976).

81. Adzhubei, A. A., Sternberg, M. J. E. & Makarov, A. A. Polyproline-II helix in proteins: Structure and function. J. Mol. Biol. 425, 2100–2132 (2013).

82. Qi, F., Motz, M., Jung, K., Lassak, J. & Frishman, D. Evolutionary analysis of polyproline motifs in Escherichia coli reveals their regulatory role in translation. PLOS Comput. Biol. 1–19 (2018). doi:10.1371/journal.pcbi.1005987

83. Wang, S., Fleming, R. T., Westbrook, E. M., Matsumura, P. & McKay, D. B. Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription. J. Mol. Biol. 355, 798–808 (2006).

84. Saini, P., Eyler, D. E., Green, R. & Dever, T. E. Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118–121 (2009).

85. Roy, H. et al. The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-β-lysine. Nat. Chem. Biol. 7, 667–669 (2011).

86. Yanagisawa, T., Sumida, T., Ishii, R., Takemoto, C. & Yokoyama, S. A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nat. Struct. Mol. Biol. 17, 1136–1143 (2010).

87. Peil, L. et al. Lys34 of translation elongation factor EF-P is hydroxylated by YfcM. Nat. Chem. Biol. 8, 695–697 (2012).

88. Nakatogawa, H. & Ito, K. The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636 (2002).

89. Rajapandi, T., Dolan, K. M. & Oliver, D. B. The first gene in the Escherichia coli secA operon, gene X, encodes a nonessential secretory protein. J. Bacteriol. 173, 7092–7097 (1991).

90. Muto, H., Nakatogawa, H. & Ito, K. Genetically Encoded but Nonpolypeptide Prolyl-tRNA Functions in the A Site for SecM-Mediated Ribosomal Stall. Mol. Cell 22, 545–552 (2006).

91. Mitra, K. et al. Elongation Arrest by SecM via a Cascade of Ribosomal RNA Rearrangements. Mol. Cell 22, 533–543 (2006).

92. Arenz, S. et al. Drug sensing by the ribosome induces translational arrest via active site perturbation. Mol. Cell 56, 446–452 (2014).

93. Davis, L. & Chin, J. W. Designer proteins: Applications of genetic code expansion in cell biology. Nature Reviews Molecular Cell Biology 13, 168–182 (2012).

94. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

95. Goto, Y., Katoh, T. & Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc. 6, 779–790 (2011).

96. Ieong, K. W., Pavlov, M. Y., Kwiatkowski, M., Ehrenberg, M. & Forster, A. C. A tRNA body with high affinity for EF-Tu hastens ribosomal incorporation of unnatural amino acids. RNA 20, 632–643 (2014).

97. Achenbach, J. et al. Outwitting EF-Tu and the ribosome: Translation with D-amino acids. Nucleic Acids Res. 43, 5687–5698 (2015).

98. Katoh, T., Iwane, Y. & Suga, H. Logical engineering of D-arm and T-stem of tRNA that enhances D-amino acid incorporation. Nucleic Acids Res. 45, 12601–12610 (2017).

99. Katoh, T. et al. Consecutive Elongation of D-Amino Acids in Translation. Cell Chem. Biol. 24, 46–54 (2017).

100. Kawakami, T., Murakami, H. & Suga, H. Messenger RNA-Programmed Incorporation of Multiple N-MethylAmino Acids into Linear and Cyclic Peptides. Chem. Biol. 15, 32–42 (2008).

101. Kawakami, T., Murakami, H. & Suga, H. Ribosomal Synthesis of Polypeptoids and Peptoid - Peptide Hybrids. J. Am. Chem. Soc. 16861–16863 (2008).

102. Ohta, A., Murakami, H., Higashimura, E. & Suga, H. Synthesis of Polyester by Means of Genetic Code Reprogramming. Chem. Biol. 14, 1315–1322 (2007).

103. Takatsuji, R. et al. Ribosomal Synthesis of Backbone-Cyclic Peptides Compatible with in Vitro Display. J. Am. Chem. Soc. (2019). doi:10.1021/jacs.8b05327

104. Ellman, J. A., Ellman, J. A., Mendel, D. & Shiultz, P. G. Site-Specific Incorporation of Novel Backbone Structures into Proteins. Science 197, (1992).

105. Fujino, T., Goto, Y., Suga, H. & Murakami, H. Ribosomal Synthesis of Peptides with Multiple β-Amino Acids. J. Am. Chem. Soc. 138, 1962–1969 (2016).

106. Katoh, T. & Suga, H. Ribosomal Incorporation of Consecutive β-Amino Acids. J. Am. Chem. Soc. 140, 12159– 12167 (2018).

107. Rogers, J. M. et al. Ribosomal synthesis and folding of peptide-helical aromatic foldamer hybrids. Nat. Chem. 10, 405–412 (2018).

108. Yamagishi, Y. et al. Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library. Chem. Biol. 18, 1562–1570 (2011).

109. Rogers, J. M., Passioura, T. & Suga, H. Nonproteinogenic deep mutational scanning of linear and cyclic peptides. Proc. Natl. Acad. Sci. 115, 10959–10964 (2018).

110. Mann, M. Functional and quantitative proteomics using SILAC. Nature Reviews Molecular Cell Biology 7, 952– 958 (2006).

111. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. & Weissman, J. S. Genome-Wide Analysis in Vivo of Resolution Using Ribosome Profiling. Science 324, 218–23 (2009).

112. Jackson, R. & Standart, N. The awesome power of ribosome profiling. RNA 21, 652–654 (2015).

113. Fowler, D. M. et al. High-resolution mapping of protein sequence-function relationships. Nat. Methods 7, 741– 746 (2010).

114. Olson, C. A., Wu, N. C. & Sun, R. A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain. Curr. Biol. 24, 2643–2651 (2014).

115. Zondlo, N. J. Aromatic-proline interactions: Electronically tunable CH/π interactions. Acc. Chem. Res. 46, 1039– 1049 (2013).

116. Heurgué-Hamard, V., Mora, L., Guarneros, G. & Buckingham, R. H. The growth defect in Escherichia coli deficient in peptidyl-tRNA hydrolase is due to starvation for Lys-tRNA(Lys). EMBO J. 15, 2826–2833 (1996).

117. Hernández, J., Ontiveros, C., Valadez, J. G., Buckingham, R. H. & Guarneros, G. Regulation of protein synthesis by minigene expression. Biochimie 79, 527–531 (1997).

118. Dinçbas, V., Heurgué-Hamard, V., Buckingham, R. H., Karimi, R. & Ehrenberg, M. Shutdown in protein synthesis due to the expression of mini-genes in bacteria. J. Mol. Biol. 291, 745–759 (1999).

119. Cruz-vera, L. R. et al. The rate of peptidyl-tRNA dissociation from the ribosome during minigene expression depends on the nature of the last decoding interaction. J. Biol. Chem. 278, 26065–26070 (2003).

120. Gonzalez De Valdivia, E. I. & Isaksson, L. A. Abortive translation caused by peptidyl-tRNA drop-off at NGG codons in the early coding region of mRNA. FEBS J. 272, 5306–5316 (2005).

121. Delgado-Olivares, L., Zamora-Romo, E., Guarneros, G. & Hernandez-Sanchez, J. Codon-specific and general inhibition of protein synthesis by the tRNA-sequestering minigenes. Biochimie 88, 793–800 (2006).

122. Jacinto-loeza, E., Vivanco-domínguez, S., Guarneros, G. & Hernández-sánchez, J. Minigene-like inhibition of protein synthesis mediated by hungry codons near the start codon. Nucleic Acids Res. 36, 4233–4241 (2008).

123. Baba, T. et al. Construction of Escherichia coli K-12 in-frame , single-gene knockout mutants : the Keio collection. Mol. Syst. Biol. 4474, (2006).

124. Keiler, K. C., Waller, P. R. H. & Sauer, R. T. Role of a Peptide Tagging System in Degradation of Proteins Synthesized from Damaged Messenger RNA. Science 271, 990–993 (1996).

125. Wali Karzai, A., Susskind, M. M. & Sauer, R. T. SmpB, a unique RNA-binding protein essential for the peptidetagging activity of SsrA (tmRNA). EMBO J. 18, 3793–3799 (1999).

126. Chadani, Y. et al. Ribosome rescue by Escherichia coli ArfA (YhdL) in the absence of trans-translation system. Mol. Microbiol. 78, 796–808 (2010).

127. Chadani, Y., Ono, K., Kutsukake, K. & Abo, T. Escherichia coli YaeJ protein mediates a novel ribosome-rescue pathway distinct from SsrA- and ArfA-mediated pathways. Mol. Microbiol. 80, 772–785 (2011).

128. Lytvynenko, I. et al. Alanine Tails Signal Proteolysis in Bacterial Ribosome-Associated Quality Control. Cell 1– 15 (2019). doi:10.1016/j.cell.2019.05.002

129. Dougan, D. A., Truscott, K. N. & Zeth, K. The bacterial N-end rule pathway: Expect the unexpected. Mol. Microbiol. 76, 545–558 (2010).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る