リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Total Synthesis of Lyconesidine B, a Lycopodium Alkaloid with an Oxygenated, Amine-Type Fawcettimine Core」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Total Synthesis of Lyconesidine B, a Lycopodium Alkaloid with an Oxygenated, Amine-Type Fawcettimine Core

Kurose, Tomohiro Tsukano, Chihiro Nanjo, Takeshi Takemoto, Yoshiji 京都大学 DOI:10.1021/acs.orglett.0c03816

2021.02

概要

This report describes the total synthesis of the complex, oxygenated tetracyclic alkaloid, lyconesidine B. The key synthetic challenge involves diastereoselective generation of a decahydroquinoline ring with a quaternary carbon at the angular position via domino cyclopropanation, ring-opening, and reduction. Another crucial step is the domino ene-yne metathesis involving a quaternary ammonium ion, leading to the construction of a decahydroazaazulen framework.

参考文献

(1) Hirasawa, Y.; Morita, H.; Kobayashi, J. Lyconesidines A-C, new alkaloids from lycopodium chinense. Tetrahedron 2002, 58, 5483– 5488.

(2) Selected reviews of Lycopodium alkaloids: (a) Hirasawa, Y.; Kobayashi, J.; Morita, H. The Lycopodium Alkaloids. Heterocycles 2009, 77, 679–729. (b) Ma, X.; Gang, D. R.; The Lycopodium alkaloids. Nat. Prod. Rep. 2004, 21, 752–772. (c) Ayer, W. A. The Lycopodium Alkaloids. Nat. Prod. Rep. 1991, 8, 455–463.

(3) Recent reviews on the total synthesis of fawcettimine-type Lycopodium alkaloids: (a) Nakayama, A.; Kitajima, M.; Takayama, H. Syntheses of Fawcettimine-Type Lycopodium Alkaloids Utilizing the Pauson– Khand Reaction. Synlett 2012, 23, 2014–2024. (b) Murphy, R. A.; Sarpong, R. Heathcock-Inspired Strategies for the Synthesis of Fawcettimine-Type Lycopodium Alkaloids. Chem. Eur. J. 2014, 20, 42–56.

(4) Selected reports of total synthesis of fawcettimine-type alkaloids containing aminal- or enamine-type skeletons: (a) Harayama, T.; Takatani, M.; Inubushi, Y. Stereoselective Synthesis of Lycopodium Alkaloids, (+)-Fawcettimine and (+)-8-Deoxyserratimine. Tetrahedron Lett. 1979, 44, 4307–4310. (b) Harayama, T.; Takatani, M.; Inubushi, Y. Total Synthesis of the Lycopodium Alkaloids (±)-Fawcettimine and (±)-8-Deoxyserratimine. Chem. Pharm. Bull. 1980, 28, 2394–2402. (c) Heathcock, C. H.; Smith, K. M.; Blumenkopf, T. A. Total Synthesis of (±)-Fawcettimine (Burnell’s Base A). J. Am. Chem. Soc. 1986, 108, 5022–5024. (d) Heathcock, C. H.; Blumenkopf, T. A.; Smith, K. M. Total Synthesis of (±)-Fawcettimine. J. Org. Chem. 1989, 54, 1548– 1562. (e) Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Total Synthesis of (+)-Fawcettimine. Angew. Chem. Int. Ed. 2007, 46, 7671–7673. (f) Kozak, J. A.; Dake, G. R. Total Synthesis of (+)-Fawcettidine. Angew. Chem. Int. Ed. 2008, 47, 4221–4223. (g) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. First Asymmetric Total Syntheses of Fawcettimine-Type Lycopodium Alkaloids, Lycoposerramine-C and Phlegmariurine-A. Org. Lett. 2009, 11, 5554–5557. (h) Jung, M. E.; Chang, J. J.; Enantiospecific Formal Total Synthesis of (+)-Fawcettimine. Org. Lett. 2010, 12, 2962–2965. (i) Otsuka, Y.; Inagaki, F.; Mukai, C. Total Syntheses of (+)-Fawcettimine and (+)-Lycoposerramine-B. J. Org. Chem. 2010, 75, 3420–3426. (j) Zhang, X.-M.; Tu, Y.-Q.; Zhang, F. M.; Shao, H.; Meng, X. Total Synthesis of (±)-Alopecuridine and Its Biomimetic Transformation into (±)-Sieboldine A. Angew. Chem. Int. Ed. 2011, 50, 3916–3919. (k) Nakayama, A. Kogure, N. Kitajima, M. Takayama, H. Asymmetric Total Synthesis of a Pentacyclic Lycopodium Alkaloid: Huperzine-Q. Angew. Chem. Int. Ed. 2011, 50, 8025– 8028. (l) Yang, Y.-R.; Shen, L.; Huang, J.-Z.; Xu, T.; Wei, K. Application of the Helquist Annulation in Lycopodium Alkaloid Synthesis: Unified Total Syntheses of (−)-8-Deoxyserratinine, (+)-Fawcettimine, and (+)-Lycoflexine. J. Org. Chem. 2011, 76, 3684–3690. (m) Li, H.; Wang, X.; Lei, X. Total Syntheses of Lycopodium Alkaloids (+)-Fawcettimine, (+)-Fawcettidine, and (−)-8-Deoxyserratinine. Angew. Chem. Int. Ed. 2012, 51, 491–495. (n) Pan, G.; Williams, R. M.; Unified Total Syntheses of Fawcettimine Class Alkaloids: Fawcettimine, Fawcettidine, Lycoflexine, and Lycoposerramine B. J. Org. Chem. 2012, 77, 4801–4811. (o) Zaimoku, H.; Nishide, H.; Nishibata, A.; Goto, N.; Taniguchi, T.; Ishibashi, H. Syntheses of (±)-Serratine, (±)-Lycoposerramine T, and (±)-Lycopoclavamine B. Org. Lett. 2013, 15, 2140–2143. (p) Zeng, C. Zheng, C.; Zhao, J.; Zhao, G. Divergent Total Syntheses of (−)-Lycopladine D, (+)-Fawcettidine, and (+)-Lycoposerramine Q. Org. Lett. 2013, 15, 5846–5849. (q) Itoh, N.; Iwata, T.; Sugihara, H.; Inagaki, F.; Mukai, C. Total Syntheses of (±)-Fawcettimine, (±)-Fawcettidine, (±)-Lycoflexine, and (±)-Lycoposerramine-Q. Chem. Eur. J. 2013, 19, 8665–8672. (r) Hou, S.-H.; Tu, Y.-Q.; Liu, L.; Zhang, F.-M.; Wang, S.-H.; Zhang, X.-M. Divergent and Efficient Syntheses of the Lycopodium Alkaloids (−)-Lycojaponicumin C, (−)-8-Deoxyserratinine, (+)-Fawcettimine, and (+)-Fawcettidine. Angew. Chem. Int. Ed 2013, 52, 11373–11376. (s) Li, H.; Wang, X.; Hong, B.; Lei, X. Collective Synthesis of Lycopodium Alkaloids and Tautomer Locking Strategy for the Total Synthesis of (−)-Lycojapodine A. J. Org. Chem. 2013, 78, 800–821. (t) Xu, K.; Cheng, B.; Li, Y.; Xu, T.; Yu, C.; Zhang, J.; Ma, Z.; Zhai, H. Stereocontrolled Total Syntheses of (±)-Fawcettimine, (±)-Lycoflexine, and (±)-Lycoflexine N-Oxide. Org. Lett. 2014, 16, 196–199. (u) Zhang, J.; Wu, J.; Hong, B.; Ai, W.; Wang, X.; Li, H.; Lei, X. Diversity-oriented synthesis of Lycopodium alkaloids inspired by the hidden functional group pairing pattern. Nat. Commun. 2014, 5, 4614. (v) Zaimoku, H.; Taniguchi, T. Redox Divergent Synthesis of Fawcettimine-Type Lycopodium Alkaloids. Chem. Eur. J. 2014, 20, 9613–9619. (w) Zheng, C.; Zhao, J.; Zhao, G. Enantioselective divergent total syntheses of fawcettimine-type Lycopodium alkaloids. Tetrahedron 2015, 71, 64–69. (x) Hong, B.; Li, H.; Wu, J.; Zhang, J.; Lei, X. Total Syntheses of (−)-Huperzine Q and (+)-Lycopladines B and C. Angew. Chem. Int. Ed. 2015, 54, 1011–1015. (y) Hong, B.; Hu, D.; Wu, J.; Zhang, J.; Li, H.; Pan, Y.; Lei, X. Divergent Total Syntheses of (−)-Huperzine Q, (+)-Lycopladine B, (+)-Lycopladine C, and (−)-4- epi-Lycopladine D. Chem. Asian J. 2017, 12, 1557–1567. (z) Tanimura, S.; Yokoshima, S.; Fukuyama, T. Total Synthesis of Huperzine Q. Org. Lett. 2017, 19, 3684–3686. (aa) Kaneko, H.; Takahashi, S.; Kogure, N.; Kitajima, M.; Takayama, H. Asymmetric Total Synthesis of Fawcettimine-Type Lycopodium Alkaloid, Lycopoclavamine-A. J. Org. Chem. 2019, 84, 5645–5654. (ab) Zeng, X.; Jia, Z.; Qui, F. G. A concise asymmetric total synthesis of (+)-fawcettimine. Tetrahedron Lett. 2020, 61, 152329.

(5) Recent synthetic studies of Lycopodium alkaloids related to fawcettimine-type alkaloids: (a) Liu, K.-M.; Chau, C.-M.; Sha, C.-K. Intermolecular radical addition reactions of a-iodo cycloalkenones and a synthetic study of the formal synthesis of enantiopure fawcettimine. Chem. Commun. 2008, 44, 91–93. (b) Wang, F.-X.; Du, J.-Y.; Wang, H.-B.; Zhang, P.-L.; Zhang, G.-B.; Yu, K.-Y.; Zhang, X.-Z.; An, X.-T.; Cao, Y.-X.; Fan, C.-A. Total Synthesis of Lycopodium Alkaloids Palhinine A and Palhinine D. J. Am. Chem. Soc. 2017, 139, 4282–4285. (c) Chen, C.-M.; Shiao, H.-Y.; Uang, B.-J.; Hsieh, H.-P. Biomimetic Syntheses of (±)-Isopalhinine A, (±)-Palhinine A, and (±)-Palhinine D. Angew. Chem. Int. Ed. 2018, 57, 15572–15576. (d) Hartrampf, F. W. W.; Furukawa, T.; Trauner, D. A Conia-Ene-Type Cyclization under Basic Conditions Enables an Efficient Synthesis of (−)-Lycoposerramine R. Angew. Chem. Int. Ed. 2017, 56, 893–896. (e) Huang, W.-Y.; Nishikawa, T.; Nakazaki, A. Toward a Synthesis of FawcettimineType Lycopodium Alkaloids: Stereocontrolled Synthesis of a Functionalized Azaspirocycle Precursor. J. Org. Chem. 2018, 83, 11108–11117. (f) Seah, K. Y.; Robertson, J. Investigations of an annulation-fragmentation-spirocyclisation approach to fawcettimine-type Lycopodium alkaloids. Tetrahedron 2019, 75, 130661. (g) Shao, H.; Fang, K.; Wang, Y.-P.; Zhang, X.-M.; Ding, T.-M.; Zhang, S.-Y.; Chen, Z.-M. Tu, Y.Q. Total Synthesis of Fawcettimine-Type Alkaloid, Lycojaponicumin A. Org. Lett. 2020, 22, 3775–3779.

(6) Ge, H.; Zhang, L.; Tan, R.; Yao, Z. Protecting Group-Free Total Synthesis of (−)-Lannotinidine B. J. Am. Chem. Soc. 2012, 134, 12323– 12325.

(7) Diver, S. T.; Clark, J. R. in Comprehensive Organic Synthesis, Vol. 5, 2nd ed. (Eds.: P. Knochel, G. A. Molander), Elsevier, 2014, pp. 1302–1356.

(8) Selected examples of ene-yne metathesis: (a) Shi, L.; He, Y,; Gong, J.; Yang Z. Concise gram-scale synthesis of Euphorikanin A skeleton through a domino ring-closing metathesis strategy. Chem. Commun. 2020, 56, 531–534. (b) Wang, Y.; Jäger, A.; Gruner, M.; Lübken, T.; Metz P. Enantioselective Total Synthesis of 3β-Hydroxy-7β-kemp8(9)-en-6-one, a Diterpene Isolated from Higher Termites. Angew. Chem. Int. Ed. 2017, 56, 15861–15865. (c) Betkekar, V. V.; Sayyad, A. A.; Kaliappan, K. P. A Domino Enyne/IMDA Approach to the Core Structure of (−) Vinigrol. Org. Lett. 2014, 16, 5540–5543. (d) Ramharter, J.; Weinstabl, H.; Mulzer, J. Synthesis of the Lycopodium Alkaloid (+)-Lycoflexine, J. Am. Chem. Soc. 2010, 132, 14338–14339. (e) Fukumoto, H.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Total Synthesis of (+)--Erythroidine. Angew. Chem. Int. Ed. 2006, 45, 2731–2734. (f) Boyer, F. D.; Hanna, H.; Ricard, L. Formal Synthesis of (±)-Guanacastepene A:  A Tandem Ring-Closing Metathesis Approach. Org. Lett. 2004, 6, 1817–1820. (g) Honda, T.; Namiki, H.; Kaneda, K.; Mizutani, H. First Diastereoselective Chiral Synthesis of (−)-Securinine. Org. Lett. 2004, 6, 87–89. (h) Shimizu, K.; Takemoto, M.; Mori, M. Novel Synthesis of Heterocycles Having a Functionalized Carbon Center via Nickel-Mediated Carboxylation: Total Synthesis of Erythrocarine. Org. Lett. 2003, 5, 2323–2325. (i) Huang, J.; Xiong, H.; Hsung, R. P.; Rameshkumar, C.; Mulder, J. A.; Grebe, T. P. The First Successful Base-Promoted Isomerization of Propargyl Amides to Chiral Ynamides. Applications in Ring-Closing Metathesis of Ene−Ynamides and Tandem RCM of Diene−Ynamides. Org. Lett. 2002, 4, 2417–2420. (j) Boyer, F.-D.; Hanna, I.; Ricard. L. Synthesis of Polyoxygenated Bicyclic Systems Containing Medium-Sized Rings from Carbohydrates via Tandem Metathesis of Dienynes. Org. Lett. 2001, 3, 3095–3098. (k) Kim, S.-H.; Bowden, N.; Grubbs, R. H. Catalytic Ring Closing Metathesis of Dienynes: Construction of Fused Bicyclic Rings. J. Am. Chem. Soc. 1994, 116, 10801–10802.

(9) Kurose, T.; Tsukano, C.; Takemoto, Y. Synthesis of Octahydro- and Decahydroquinolines by a One-Pot Cascade Reaction of Tetrasubstituted Enecarbamate. Org. Lett. 2017, 19, 4762–4765.

(10) For recent reviews of ring-opening of aminocyclopropane with an electron-withdrawing group, see: (a) Olga, O.; Bower, J. F. Selective Carbon−Carbon Bond Cleavage of Cyclopropylamine Derivatives. Chem. Rev. 2020, 120, in press, DOI: 10.1021/acs.chemrev.0c00166. (b) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Carbocycles from donor–acceptor cyclopropanes. Org. Biomol. Chem. 2015, 13, 655–671. (c) Schneider, T. F.; Kaschel, J.; Werz, D. B. A New Golden Age for Donor–Acceptor Cyclopropanes. Angew. Chem. Int. Ed. 2014, 53, 5504–5523. (d) de Nanteuil, F.; De Simone, F.; Frei, R.; Benfatti, F.; Serrano, E.; Waser, J. Cyclization and annulation reactions of nitrogensubstituted cyclopropanes and cyclobutanes. Chem. Commun. 2014, 50, 10912–10928.

(11) Tsushima, K.; Hirade, T.; Hasegawa, H.; Murai, A. Conversion of N-Acyllactams into α-Alkylated Cyclic Enamide via Vinyl Triflate. Chem. Lett. 1995, 9, 801–802.

(12) Jung, H.-Y.; Feng, C.; Kim, H.; Yun, J. Copper-catalyzed boration of activated alkynes. Chiral boranes via a one-pot copper-catalyzed boration and reduction protocol. Tetrahedron 2012, 68, 3444–3449.

(13) Baker, B. A.; Bošković, Ž. V.; Lipshutz, B. H. (BDP)CuH: A “Hot” Stryker’s Reagent for Use in Achiral Conjugate Reductions. Org. Lett. 2008, 10, 289–292.

(14) Kitamura, M.; Tashiro, N.; Miyagawa, S.; Okauchi, T. 2-Azido1,3-dimethylimidazolinium Salts: Efficient Diazo-Transfer Reagents for 1,3-Dicarbonyl Compounds. Synthesis 2011, 7, 1037–1044.

(15) Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. Expanding the Scope of C-H Amination through Catalyst Design. J. Am. Chem. Soc. 2004, 126, 15378–15379.

(16) Harada, S.; Kono, M.; Nozaki, T.; Menjo, Y.; Nemoto, T.; Hamada, Y. General Approach to Nitrogen-Bridged Bicyclic Frameworks by Rh-Catalyzed Formal Carbenoid Insertion into an Amide C−N Bond. J. Org. Chem. 2015, 80, 10317–10333.

(17) Logan, M. M.; Toma, T.; Thomas-Tran, R.; Du Bois, J. Asymmetric synthesis of batrachotoxin: Enantiomeric toxins show functional divergence against NaV. Science 2016, 354, 865–869.

(18) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Tereapropylammonium Perruthenate, Pr4N+RuO4 – , TPAP: A Catalytic Oxidation for Organic Synthesis. Synthesis 1994, 1994, 639–666.

(19) Yang, Q.; Xiao, W.-J.; Yu, Z. Lewis Acid Assisted Ring-Closing Metathesis of Chiral Diallylamines: An Efficient Approach to Enantiopure Pyrrolidine Derivatives. Org. Lett. 2005, 7, 871–874.

(20) Holleben, M. L. A.; Livotto, P. R.; Schuch, X. M. Experimental and Theoretical Study on the Reactivity of the R-CN/H2O2 System in the Epoxidation of Unfunctionalized Olefins. J. Braz. Chem. Soc. 2001, 12, 42–46.

(21) Kobayashi, S.; Hachiya, I.; Ishitani, H.; Araki, M. Scandium Trifluoromethanesulfonate (Sc(OTf)3) as a Novel Reusable Lewis Acid Catalyst in Aldol and Michael Reactions. Synlett 1993, 1993, 472–474.

(22) Sasano, Y.; Nagasawa, S.; Yamazaki, M.; Shibuya, M.; Park, J.; Iwabuchi, Y. Highly Chemoselective Aerobic Oxidation of Amino Alcohols into Amino Carbonyl Compounds. Angew. Chem. Int. Ed. 2014, 53, 3236–3240.

参考文献をもっと見る