リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Supply risk evolution of raw materials for batteries and fossil fuels for selected OECD countries (2000–2018)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Supply risk evolution of raw materials for batteries and fossil fuels for selected OECD countries (2000–2018)

Koyamparambath, Anish Santillán-Saldivar, Jair McLellan, Benjamin Sonnemann, Guido 京都大学 DOI:10.1016/j.resourpol.2021.102465

2022.03

概要

Fossil fuels are the dominant form of storable energy, but their share in the global energy supply is slowly diminishing due to climate mitigation policies. Alternative energy production from variable renewable energy sources for both stationary and mobile use requires some form of energy storage. Batteries are the current frontrunner for this application, particularly with Li-ion batteries that are reliable and highly efficient. However, batteries themselves have evolved to meet current requirements and expectations. These changes in battery chemistry have shifted the dependency on raw materials used to produce them. Raw materials critical for battery production are subject to supply risk due to their availability or trade policies prompting a need for supply risk assessment. Such resource supply risks depend on the perspective of the importing country or region. By analysing the supply risk of raw materials used in the production of batteries in comparison to fossil fuels, it is possible to understand the shift in risk to storable energy that is underway. In this study, we analyse the supply risk of selected raw materials used in batteries and compare it with the supply risk of fossil fuels for the period 2000 to 2018 from the perspective of the European Union, USA, South Korea, Japan, Canada and Australia using the GeoPolRisk method. Our analysis demonstrates a higher risk of supply for raw materials compared to that of fossil fuels for all the selected territories. Rare earth elements, graphite and magnesium, are amongst the raw materials with the highest supply risk due to their concentrated production in one or only a few countries. Countries have recognised the need for raw material security and made specific policies to ensure secure supply. Raw material security is an emerging concern for all the countries, especially in the case of batteries for major manufacturing nations that are heavily import-dependent. Raw materials producing countries like Canada and Australia focused on stockpiling minerals and minerals exploration while importing countries such as Japan and South Korea are looking for alternate sources for their supply. The results from our analysis suggest that the necessary policy reforms taken for energy security have benefited all the countries with a reduced risk of fossil fuel supply, while similar policies to secure raw materials are discussed but not yet fully implemented.

この論文で使われている画像

参考文献

Aktas, S., 2010. Silver recovery from spent silver oxide button cells. Hydrometallurgy

104, 106–111. https://doi.org/10.1016/j.hydromet.2010.05.004.

ATIC, 2018. The lithium-ion battery value chain – new economy opportunities for

Australia. Aust. Trade Invest. Comm. 56.

Avicenne Energy, 2020. In: Worldwide Rechargeable - Battery Market 2019-2030, 2020

edition.

Bach, V., Berger, M., Henßler, M., Kirchner, M., Leiser, S., Mohr, L., Rother, E.,

Ruhland, K., Schneider, L., Tikana, L., Volkhausen, W., Walachowicz, F.,

Finkbeiner, M., 2016. Integrated method to assess resource efficiency – ESSENZ.

J. Clean. Prod. 137, 118–130. https://doi.org/10.1016/j.jclepro.2016.07.077.

Bartekova, ´ E., Kemp, R., 2016a. National strategies for securing a stable supply of rare

earths in different world regions. Resour. Policy 49, 153–164. https://doi.org/

10.1016/j.resourpol.2016.05.003.

Bartekova, ´ E., Kemp, R., 2016b. Critical Raw Material Strategies in Different World

Regions.

Belardi, G., Ballirano, P., Ferrini, M., Lavecchia, R., Medici, F., Piga, L., Scoppettuolo, A.,

2011. Characterization of spent zinc-carbon and alkaline batteries by SEM-EDS,

TGA/DTA and XRPD analysis. Thermochim. Acta 526, 169–177. https://doi.org/

10.1016/j.tca.2011.09.012.

Berger, M., Sonderegger, T., Alvarenga, R., Bach, V., Cimprich, A., Dewulf, J.,

Frischknecht, R., Guin´ee, J., Helbig, C., Huppertz, T., Jolliet, O., Motoshita, M.,

Northey, S., Pena, ˜ C.A., Rugani, B., Sahnoune, A., Schrijvers, D., Schulze, R.,

Sonnemann, G., Valero, A., Weidema, B.P., Young, S.B., 2020. Mineral resources in

life cycle impact assessment: part II – recommendations on application-dependent

use of existing methods and on future method development needs. Int. J. Life Cycle

Assess. https://doi.org/10.1007/s11367-020-01737-5.

Best, Andrew, Denault, A., Hebabi, M., Liu, X., Samson, J.-P., Wilson, P., 2010. Canadian

energy security what does energy security mean for Canada. Creat. Commons.

Boggs, Squire Patton, 2019. Australia ’ S New Commitment to Funding Rare Earth and

Critical Minerals Projects Opens up the AU $ 3 Billion Defence Export Facility to

Junior Explorers Searching for Financing Solutions.

Borah, R., Hughson, F.R., Johnston, J., Nann, T., 2020. On battery materials and

methods. Mater. Today Adv. 6, 100046. https://doi.org/10.1016/j.

mtadv.2019.100046.

British Geological Survey, 2020. Minerals UK - centre for sustainable mineral

development [WWW document]. Br. Geolotical surv. URL. https://www.bgs.ac.

uk/mineralsuk/statistics/worldStatistics.html.

British Petroleum Company, 2021. BP Statistical Review of World Energy.

Cimprich, A., Karim, K.S., Young, S.B., 2018. Extending the geopolitical supply risk

method: material “substitutability” indicators applied to electric vehicles and dental

X-ray equipment. Int. J. Life Cycle Assess. 23, 2024–2042. https://doi.org/10.1007/

s11367-017-1418-4.

Clough, T.J., Wertz, J.A., 2001. Life and capacity improvements in lead acid batteries

through metal control additives. Proc. Annu. Batter. Conf. Appl. Adv. 87–92. https://

doi.org/10.1109/bcaa.2001.905105.

CRS Report, 2019. Critical Minerals and U . S . Public Policy. Congressional Research

Service.

Deese, A., 2014. Energy : Economics , Politics , and Security 4, 140–153.

Department of Industry Innovation and Science (Australia), 2018. Resources 2030

Taskforce: Final Report.

Department of Industry Innovation and Science (Australia), 2019. Australia’s Critical

Minerals Strategy. Commonwealth of Australia.

EC, 2018. Europe on the move - Annex 2: strategic action plan on batteries. Eur.

Community 1–10.

EC, 2019. The European green deal. Eur. Community 53, 24. https://doi.org/10.1017/

CBO9781107415324.004.

EC, 2020. The 2020 EU Critical Raw Materials List. European Commission.

EC, 2021a. Directive of the European Parliament and of the Council as Regards the

Promotion of Energy from Renewable Sources. European Comissmion.

EC, 2021b. EU Economy and Society to Meet Climate Ambitions.

EIA, 2018. The United States Is Now the Largest Global Crude Oil Producer. US Energy

Information Administration.

EIA, 2021. Energy Overview. US Energy Information Administration.

EIT R.M, 2020. EIT Raw Materials - Innovation. EIT.

Eurostat, 2020. Energy Statistics - an Overview [WWW Document]. Eurostat Stat https://

doi.org/ISSN2443-8219.

Fantke, P., Chiu, W.A., Aylward, L., Judson, R., Huang, L., Jang, S., Gouin, T.,

Rhomberg, L., Aurisano, N., McKone, T., Jolliet, O., 2021. Exposure and toxicity

characterization of chemical emissions and chemicals in products: global recommendations and implementation in USEtox. Int. J. Life Cycle Assess. 26,

899–915. https://doi.org/10.1007/s11367-021-01889-y.

Fetcenko, M., Koch, J., Zelinsky, M., 2015. Nickel-metal hydride and nickel-zinc batteries

for hybrid electric vehicles and battery electric vehicles. Advances in Battery

Technologies for Electric Vehicles. Elsevier Ltd. https://doi.org/10.1016/B978-1-

78242-377-5.00006-6.

Financial Times, 2018. Japan Is Nervous about its Energy Security. Financ. Times.

Gemechu, E.D., Helbig, C., Sonnemann, G., Thorenz, A., Tuma, A., 2015. Import-based

indicator for the geopolitical supply risk of raw materials in life cycle sustainability

assessments. J. Ind. Ecol. 20, 154–165. https://doi.org/10.1111/jiec.12279.

Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., Gorini, R., 2019. The role

of renewable energy in the global energy transformation. Energy Strateg. Rev. 24,

38–50. https://doi.org/10.1016/j.esr.2019.01.006.

Goonan, T.G., 2012. Lithium Use in Batteries [Circular 1371. U.S. Geological Survey.

Graedel, T.E., Harper, E.M., Nassar, N.T., Nuss, P., Reck, B.K., Turner, B.L., 2015.

Criticality of metals and metalloids. Proc. Natl. Acad. Sci. U.S.A. 112, 4257–4262.

https://doi.org/10.1073/pnas.1500415112.

Gras, M., Gras, M., 2018. Recycling of Metals from NiMH Batteries : Development of

Liquid-Liquid Selective Extractions Based on Ionic Liquids.

Hannah, R., Max, R., 2019. What Share of Electricity Comes from Fossil Fuels? [WWW

Document]. Our World Data. URL. https://ourworldindata.org/fossil-fuels#what-sh

are-of-electricity-comes-from-fossil-fuels.

Helbig, C., Gemechu, E.D., Pillain, B., Young, S.B., Thorenz, A., Tuma, A.,

Sonnemann, G., 2016. Extending the geopolitical supply risk indicator: application

of life cycle sustainability assessment to the petrochemical supply chain of

polyacrylonitrile-based carbon fibers. J. Clean. Prod. 137, 1170–1178. https://doi.

org/10.1016/j.jclepro.2016.07.214.

Huang, K., Li, J., Xu, Z., 2009. A novel process for recovering valuable metals from waste

nickel-cadmium batteries. Environ. Sci. Technol. 43, 8974–8978. https://doi.org/

10.1021/es901659n.

Huleatt, M., 2019. Australian resource reviews rare earth elements 2019. Geo Australasia

1–22.

IEA, 2014. Energy Supply Security: the Emergency Response of IEA Countries 2014, IEA.

International Energy Agency, Paris.

IEA, 2020. Statistics Report: CO2 Emissions from Fuel Combustion. International Energy

Agency.

IEA, 2021a. Japan 2021 - Energy Policy Review. International Energy Agency.

IEA, 2021b. The Role of Critical Minerals in Clean Energy Transitions. International

Energy Agency.

Innovation and Networks Executive Agency, 2019. €114 million available under Horizon

2020 for next-generation batteries projects [WWW Document]. Eur. Comm. URL.

https://ec.europa.eu/inea/en/news-events/newsroom/€114-million-available-unde

r-horizon-2020-next-generation-batteries-projects.

IPCC, 2005. Historical Overview of Climate Change Science. International Panel on

Climate Change.

IPCC, 2018. Headline Statements from the Summary for Policymakers. International

Panel on Climate Change.

Jolly, R., Rhin, C., 1994. The recycling of lead-acid batteries: production of lead and

polypropylene. Resour. Conserv. Recycl. 10, 137–143. https://doi.org/10.1016/

0921-3449(94)90046-9.

Kaufmann, D., Kraay, A., Mastruzzi, M., 2010. The worldwide governance indicators :

methodology and analytical issues. World Bank - Policy Res. Work. Pap. Ser. 3,

220–246.

KEI, 2016. Introduction of the Framework Act on Resource Circulation toward

Establishing a Resource-Circulating Society in Korea, vol. 11. Korea Environ. Inst.

Lucas, J., Lucas, P., Le Mercier, T., Rollat, A., Davenport, W., 2015. Rare earths in

rechargeable batteries. Rare Earths 167–180. https://doi.org/10.1016/b978-0-444-

62735-3.00010-3.

Ma, H., Wang, B., Fan, Y., Hong, W., 2014. Development and characterization of an

electrically rechargeable zinc-air battery stack. Energies 7, 6549–6557. https://doi.

org/10.3390/en7106549.

Mancheri, N.A., Sprecher, B., Bailey, G., Ge, J., Tukker, A., 2019. Effect of Chinese

policies on rare earth supply chain resilience. Resour. Conserv. Recycl. 142,

101–112. https://doi.org/10.1016/j.resconrec.2018.11.017.

Martha De Souza, C.C.B., Corrˆea De Oliveira, D., Tenorio, ´ J.A.S., 2001. Characterization

of used alkaline batteries powder and analysis of zinc recovery by acid leaching.

J. Power Sources 103, 120–126. https://doi.org/10.1016/S0378-7753(01)00850-3.

METI, 2018. Japan’s fifth strategic energy plan. Agency Nat. Resour. Energy 91.

Morrison, W.M., Tang, R., 2012. China’s rare earth industry and export regime: economic

and trade implications for the United States. Rare Earth Elem. Supply, Trade Use

Dyn. 27–63.

Motoori, R., McLellan, B.C., 2021. Resource security strategies and preferences for deep

ocean mining from a community survey in Japan. Mar. Pol. 128 https://doi.org/

10.1016/j.marpol.2021.104511.

Nan, J., Han, D., Zuo, X., 2005. Recovery of metal values from spent lithium-ion batteries

with chemical deposition and solvent extraction. J. Power Sources 152, 278–284.

https://doi.org/10.1016/j.jpowsour.2005.03.134.

Nan, J., Han, D., Yang, M., Cui, M., Hou, X., 2006. Recovery of metal values from a

mixture of spent lithium-ion batteries and nickel-metal hydride batteries.

Hydrometallurgy 84, 75–80. https://doi.org/10.1016/j.hydromet.2006.03.059.

NASA, 2020. N.G.C. Change, Carbon dioxide concentration - NASA global climate change

[WWW Document]. URL. https://climate.nasa.gov/vital-signs/carbon-dioxide/.

Natural Resources Canada, 2020. The Canadian Minerals and Metals Plan.

Natural Resources Canada, 2021. Natural Resources Canada - Minerals and Metals Facts

[WWW Document]. Nat. Resour. Canada. URL. https://www.nrcan.gc.ca/our-natura

l-resources/minerals-mining/minerals-metals-facts/20507.

NESA, 2011. National Energy Security Assessment.

Olivetti, E.A., Ceder, G., Gaustad, G.G., Fu, X., 2017. Lithium-ion battery supply chain

considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243.

https://doi.org/10.1016/j.joule.2017.08.019.

Pohl, W.L., 1989. Comparative geology of magnesite deposits and occurrences. Monogr.

Ser. Miner. Deposits 28, 1–13.

Reuter, M., Oyi, O., Hudson, C., Schaik, A. van, Heiskanen, K., Meskers, C., Christina, H.,

2013. Metal Recycling :Opportunities, Limits, Infrastructure. International Resource

Panel of UNEP.

Rosenbaum, R.K., Huijbregts, M.A.J., Henderson, A.D., Margni, M., McKone, T.E., Van

De Meent, D., Hauschild, M.Z., Shaked, S., Li, D.S., Gold, L.S., Jolliet, O., 2011.

USEtox human exposure and toxicity factors for comparative assessment of toxic

emissions in life cycle analysis: sensitivity to key chemical properties. Int. J. Life

Cycle Assess. 16, 710–727. https://doi.org/10.1007/s11367-011-0316-4.

Rydh, C.J., Karlstrom, ¨ M., 2002. Life cycle inventory of recycling portable nickelcadmium batteries. Resour. Conserv. Recycl. 34, 289–309. https://doi.org/10.1016/

S0921-3449(01)00114-8.

Santill´

an-Saldivar, J., Cimprich, A., Shaikh, N., Laratte, B., Young, S.B., Sonnemann, G.,

2021. Resources , Conservation & Recycling How recycling mitigates supply risks of

critical raw materials : extension of the geopolitical supply risk methodology applied

to information and communication technologies in the European Union. Resour.

Conserv. Recycl. 164, 105108. https://doi.org/10.1016/j.resconrec.2020.105108.

Sayilgan, E., Kukrer, T., Civelekoglu, G., Ferella, F., Akcil, A., Veglio, F., Kitis, M., 2009.

A review of technologies for the recovery of metals from spent alkaline and zinccarbon batteries. Hydrometallurgy 97, 158–166. https://doi.org/10.1016/j.

hydromet.2009.02.008.

Schrijvers, D., Hool, A., Blengini, G.A., Chen, W.Q., Dewulf, J., Eggert, R., van Ellen, L.,

Gauss, R., Goddin, J., Habib, K., Hagelüken, C., Hirohata, A., HofmannAmtenbrink, M., Kosmol, J., Le Gleuher, M., Grohol, M., Ku, A., Lee, M.H., Liu, G.,

Nansai, K., Nuss, P., Peck, D., Reller, A., Sonnemann, G., Tercero, L., Thorenz, A.,

ager, P.A., 2020. A review of methods and data to determine raw material

criticality. Resour. Conserv. Recycl. 155, 104617. https://doi.org/10.1016/j.

resconrec.2019.104617.

Shen, Y., Moomy, R., Eggert, R.G., 2020. China’s public policies toward rare earths.

Miner. Econ. 33, 127–151. https://doi.org/10.1007/s13563-019-00214-2,

1975–2018.

Smil, V., 2016. Energy Transitions: Global and National Perspectives, Second expanded

and updated edition), 2 edition. Praeger.

Stat, O.E.C.D., 2020. Exposure to PM2.5 in countries and regions [WWW Document].

OECD.Stat. URL. https://stats.oecd.org/Index.aspx?DataSetCode=EXP_PM2_5.

Thomas, C.L., 2020. 2017 minerals yearbook. U.S. Geol. Surv. 85.1–85.15.

Thomasnet, 2018. Top US and International Battery Suppliers and Manufacturers [WWW

Document]. URL. https://www.thomasnet.com/articles/top-suppliers/batt

ery-manufacturers-suppliers/.

Thurtell, D., Nguyen, T., Moloney, J., Lawrence, N., Philalay, M., Drahos, N., Martin, K.,

Bath, A., Gibbons, M., 2018. Resources and Energy Quarterly.

Ting, M.H., Seaman, J., 2013. Rare earths: future elements of conflict in Asia? Asian

Stud. Rev. 37, 234–252. https://doi.org/10.1080/10357823.2013.767313.

Tse, P.-K., 2011. China’s Rare-Earth Industry. U.S. Geological Survey.

UN, 2015. PARIS AGREEMENT, United Nations.

United Nations, 2021. UN Comtrade [WWW Document].

US Gov, 2017. A federal strategy to ensure secure and reliable supplies of critical

minerals. Pres. Doc. 82, 60835–60837.

USGS, 2008. USGS - 2008 Minerals Yearbook - Graphite. U.S. Geological Survey.

USGS, 2010. USGS - 2010 Minerals Yearbook - Cobalt. U.S. Geological Survey.

USGS, 2011. 2009 minerals yearbook. U.S. Geol. Surv. 14.

USGS, 2018a. Interior Releases 2018’s Final List of 35 Minerals Deemed Critical to U.S.

National Security and the Economy [WWW Document]. U.S. Geol. Surv. URL. https

://www.usgs.gov/news/interior-releases-2018-s-final-list-35-minerals-deemed-crit

ical-us-national-security-and.

USGS, 2018b. Final list of critical minerals 2018. U.S. Geol. Surv. 83, 23295–23296.

USGS, 2021. USGS Minerals Commodity Statistics and Information [WWW Document].

U.S. Geol. Surv. URL. https://www.usgs.gov/centers/nmic/commodity-statistics-an

d-information.

Uysal, S., 2012. Graphite: a critical raw material and Turkey. Min. Turkey 2, 42–47.

World bank, 2020. Worldwide Governance Indicators [WWW Document]. World Bank.

URL. https://info.worldbank.org/governance/wgi/.

Yoshino, A., 2012. The birth of the lithium-ion battery. Angew. Chem. Int. Ed. 51,

5798–5800. https://doi.org/10.1002/anie.201105006.

Zakharia, N., 2020. EcoGraf secures agreement for graphite processing facility [WWW

Document]. Aust. Min. URL. https://www.australianmining.com.au/news/ecografsecures-agreement-for-graphite-processing-facility/.

Zhao, Y., Pohl, O., Bhatt, A.I., Collis, G.E., Mahon, P.J., Rüther, T., Hollenkamp, A.F.,

2021. A review on battery market trends, second-life reuse, and recycling. Sustain.

Chem. 2, 167–205. https://doi.org/10.3390/suschem2010011.

参考文献をもっと見る