リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A new indicator of forest fire risk for Indonesia based on peat soil reflectance spectra measurements.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A new indicator of forest fire risk for Indonesia based on peat soil reflectance spectra measurements.

HASHIMOTO Asahi SEGAH Hendrik YULIANTI Nina NARUSE Nobuyasu 30350408 0000-0003-3934-2641 TAKAHASHI Yukihiro 滋賀医科大学

2020.12.20

概要

Conventional fire risk prediction using vegetation indexes is inappropriate because changes in soil moisture caused by plant drought stress have a 1 to 2 month time lag, which is too long for fire risk management. Further, soil and water indices used for traditional bare land assessments are also unsuitable because Indonesia is partially covered by peat soil, which has different reflection characteristics compared to typical agricultural and field soils. Here we describe a new index for estimating peat soil moisture using satellite remote sensing data. The method was developed using the ultra-blue band (435 to 451 nm) of the Land Remote-Sensing Satellite (Landsat 8) and is based on the moisture dependence of the reflected spectra measured directly. Our developed index showed a relatively strong correlation (r = 0.56 to 0.63) with real wildfire points and was a more reliable index than conventional measures used for fire risk management.

この論文で使われている画像

参考文献

Aiken, S. R. 2004. “Runaway fires smoke-haze pollution, and unnatural disasters in

Indonesia.”, Geographical Review, 94(1), 55-79. doi: 10.1111/j.19310846.2004.tb00158.x

Boehm, H.-D. V., Siegert, F., Rieley, J. O., Page, S. E., Jauhiainen, J., Vasander, H., and

Jaya, a. 2001. “Fire impacts and carbon release on tropical peatlands in Central

Kalimantan”, Indonesia. 22nd Asian Conference on Remote Sensing, 5–9. URL:

https://crisp.nus.edu.sg/~acrs2001/pdf/121BOEHM.pdf

Bowers, S. A., and Hanks, R. J. 1965 “Reflection of radiant energy from soils.” Soil

Science,

100(2),

130-138.

URL:

https://journals.lww.com/soilsci/Citation/1965/08000/Reflection_of_Radiant_En

ergy_From_Soils.9.aspx

Carlson, T. N., Gillies, R. R., and Schmugge, T. J. 1995. “An interpretation of

methodologies for indirect measurement of soil water content.” Agricultural and

Forest Meteorology, 77(3–4), 191–205. doi: org/10.1016/0168-1923(95)02261-U

Chen, D., Huang, J., and Jackson, T. 2005. “Vegetation water content estimation for corn

and soybeans using spectral indices derived from MODIS near- and short-wave

infrared bands.” Remote Sensing of Environment, 98(2-3), 225-236. doi:

10.1016/j.rse.2005.07.008

Cloutis, E. A., McCormack, K. A., Bell, J. F., Hendrix, A. R., Bailey, D. T., Craig, M. A.,

Mertzman, S. A., Robinson, M. S., Riner, M. A. 2008. “Ultraviolet spectral

reflectance properties of common planetary minerals.” Icarus, 197(1), 321-347.

doi: 10.1016/j.icarus.2008.04.018

Deng, Y., Wu, C., Li, M., and Chen, R. (2015). “RNDSI: A ratio normalized difference

soil index for remote sensing of urban/suburban environments.” International

Journal of Applied Earth Observation and Geoinformation, 39, 40–48. doi:

10.1016/j.jag.2015.02.010

Engman, E. T., and Chauhan, N. 1995. “Status of microwave soil moisture measurements

with remote sensing.” Remote Sensing of Environment, 51(1), 189-198. doi:

10.1016/0034-4257(94)00074-W

Eyes on the forest (May 13th, 2017). https://www.eyesontheforest.or.id

Gao, B. C. 1996. “NDWI - A normalized difference water index for remote sensing of

vegetation liquid water from space.” Remote Sensing of Environment, 58(3), 257–

266. doi: 10.1016/S0034-4257(96)00067-3

Gao, Y., Hirose, K., Ohki, T., Osaki, M., Kohyama, T., and Paneque, J. 2013. “Estimation

of Dissolved Organic Carbon concentration in peat water using airborne HyMap

image.” doi: 10.13140/2.1.3511.3923

Gu, Y., Hunt, E., Wardlow, B., Basara, J. B., Brown, J. F., and Verdin, J. P. 2008.

“Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring

using Oklahoma Mesonet soil moisture data.” Geophysical Research Letters,

35(22), 1–5. doi: 10.1029/2008GL035772

Huang, J., Chen, D., and Cosh, M.H. 2009. “Sub-pixel reflectance unmixing in estimating

vegetation water content and dry biomass of corn and soybeans cropland using

normalized difference water index (NDWI) from satellites.” International Journal

of Remote Sensing, 30(8), 2075-2104. doi: 10.1080/01431160802549245

Jackson, T. J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., Doriaswamy, P.,

and Hunt, E. R. 2004. “Vegetation water content mapping using Landsat data

derived normalized difference water index for corn and soybeans.” Remote

Sensing of Environment, 92(4), 475-482. doi: 10.1016/j.rse.2003.10.021

Jacquemoud, S., Baret, F., and Hanocq, J. F. 1992. “Modeling spectraland bidirectional

soil reflectance.” Remote sensing of Environment, 41, 123-132. doi:

10.1016/0034-4257(92)90072-R

Jaiswal, R. K., Mukherjee, S., Raju, K. D., and Saxena, R. 2002. “Forest fire risk zone

mapping from satellite imagery and GIS.” International Journal of Applied Earth

Observation

and

Geoinformation,

4(1),

1-10.

doi:

10.1016/S0303-

2434(02)00006-5

Katsuhama, N., Imai, M., Naruse, N., and Takahashi, Y., 2018. “Discrimination of areas

infected with coffee leafrust using a vegetation index.” Remote Sensing Letters,

9(12), 1186-1194. doi: 10.1080/2150704X.2018.1519269

Laumonier, Y., and Biotrop, S. 1997. The Vegetation and Physiography of Sumatra:

Kluwer Academic Publishers.

Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., Sun, B., and Zhang, X. 2013. “A

Comparison of Land Surface Water Mapping Using the Normalized Difference

Water Index from TM, ETM+ and ALI.” remote sensing, 5(11), 5530-5549. doi:

10.3390/rs5115530

Lobell, D. B., and Asner, G. P. 2002. “Moisture effects on soil reflectance.” Soil Science

Society of America Journal, 66(3), 722–727. doi: 10.2136/sssaj2002.7220

Matese, A., Toscano, P., Gennaro, S. F. D., Genesio, L., Vaccari, F. P., Primicerio, J.,

Belli, C., Zaldei, A., Bianconi, R., and Gioli, B. 2015. “Intercomparison of UAV,

Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture.”

remote sensing, 7(3), 2971-2990. doi: 10.3390/rs70302971

McPartland, M. Y., Kane E. S., Falkowski, M. J., Kolka, R., Turetsky, M. R., Palik, B.,

and Montgomery, R. A. 2018 “The response of boreal peatland community

composition and NDVI to hydrologic change, warming, and elevated carbon

dioxide” Global Change Biology, 25(1), 93-107. doi: 10.1111/gcb.14465

Nicholson, S. E., and Farrar, T. J. 1994. “The influence of soil type on the relationships

between NDVI, rainfall, and soil moisture in semiarid Botswana. I. NDVI

response to rainfall.” Remote Sensing of Environment, 50(2), 107–120. doi:

10.1016/0034-4257(94)90038-8

Njoku, E. N., and Entekhabi, D. 1996 “Passive microwave remote sensing of soil

moisture.” Journal of Hydrology, 184(1-2), 101-129. doi: 10.1016/00221694(95)02970-2

Page, S. E., Siegert, F., Rieley, J. O., Boehm, H-D. V., Jaya, A., and Limin, S. 2002. “The

amount of carbon released from peat and forest fires in Indonesia during 1997.”

nature, 420, 61-65. doi: 10.1038/nature01131

Sastry, N. 2002. “Forest Fires, Air Pollution, and Mortality in Southeast Asia.”

Demography, 39, 1-23. doi: 10.2307/3088361

Silveira, E. M. O., Espírito-Santo, F. D. B., Acerbi-Júnior, F. W., Galvão, L. S., Withey,

K. D., Blackburn, G. A., Mello, J. M., Shimabukuro, Y. E., Domingues, T., and

Scolforo, J. R. S. 2019. “Reducing the effects of vegetation phenology on change

detection in tropical seasonal biomes.” GIScience and Remote Sensing, 56(5),

699-717. doi: 10.1080/15481603.2018.1550245

Sumarga, E. 2017 “Spatial indicators for human activities may explain the 2015 fire

hotspot distribution in Central Kalimantan Indonesia.” Tropical Conservation

Science, 10, 1-9. doi: 10.1177/1940082917706168

Spessa, A. C., Field, R. D., Pappenberger, F., Langner, A., Englhart, S., Weber, U.,

Stockdale, T., Siegert, F., Kaiser, J. W., and Moore, J. 2014. “Seasonal forecasting

of fire over Kalimantan, Indonesia.” Natural Hazards and Earth System Sciences,

15, 429–442. doi: 10.5194/nhess-15-429-2015

Usup, A., Hashimoto, Y., Takahashi, H., Takahashi, H., and Hayasaka, H. 2004.

“Combustion and thermal characteristics of peat fire in tropical peatland in

Central Kalimantan, Indonesia.” Tropics, 14(1), 1–19. doi: 10.3759/tropics.14.1

Verbesselt, J., Somers, B., Lhermitte, S., Jonckheere, I., Aardt, J., and Coppin, P. 2007.

“Monitoring herbaceous fuel moisture content with SPOT VEGETATION timeseries for fire risk prediction in savanna ecosystems.” Remote Sensing of

Environment, 108(4), 357-368. doi: 10.1016/j.rse.2006.11.019

Xu, L., Niu, R., Fang, S., and Dong, Y. 2012. “Cloud detection based on decision tree

over Tibetan Plateau with MODIS data.” MIPPR 2013: Remote Sensing Image

Processing, Geographic Information Systems, and Other Applications, 8921,

535–538. doi: 10.1117/12.2030399

Xu, H. 2006. “Modification of normalized difference water index (NDWI) to enhance

open water features in remotely sensed imagery.” International Journal of Remote

Sensing, 27(14), 3025-3033. doi: 10.1080/01431160600589179

Figure 1. Geographical map of (a) the study area in eastern Sumatra, Indonesia and (b)

the magnified image of the inset in (a). The Landsat 8 colour image (b) was taken on 23

September 2015 (dry season). The red circles indicate the hotspots based on MODIS from

the Terra and Aqua satellites (MCD14DL) in 2015. Each grid cell is 15 km2.

Figure 2. Reflectance spectra obtained from peat samples collected at Palangka Raya in

Indonesia with water contents of 0% and 11%, respectively. In the 11% curve, the

reflectance about 1400 nm, and about 1900 nm has characteristic dips due to the

absorbance of water.

Figure 3. Plot illustrating the INI values (absolute value) between wavelengths from 400

to 2500 nm (1 nm resolution) by using the spectra shown in Figure 2. OLI bands of

Landsat 8 are indicated by solid lines (bands 1, 3, 5 to 7).

Figure 4. Plots of the relation between the averaged index values and normalized fire area

to evaluate the influence of vegetation on the estimation of soil moisture. The normalized

fire area is defined as fire pixels per single grid area, as shown in Figure 1 (b) show the

(a) NDPSI1, (b) NDPSI3, (c) NDWI, and (d) NDSI, respectively. Diamond (circle)

symbols indicate regions where NDVI values of 0.5 (0.3) have been excluded. Crosses

indicate the averaged INI values in the respective grid. Correlation coefficients for each

symbol are given to the right of the regression line. (NDPSI1: r1 p < .000, r2 p < .000, r3

p = .082, NDPSI3: r1 p < .000, r2 p = .759, r3 p = .383, NDWI: r1 p = .051, r2 p = .201, r3

p = .036, NDSI: r1 p = .701, r2 p = .383, r3 p = .090).

Figure 5. Comparison of the fire points and various analysis images. (a) to (d) are

enlarged images of the region delineated by the red line in the map at left. The black

pixels in the enlarged images of (a) NDPSI1 have NDCI values above -0.3, indicating

pixels of cloud, cloud shadow, and surface water; (b) black pixels have NDVI values

above 0.5 in addition to (a); In the (c) NDPSI3 and (d) NDSI maps, black pixels indicate

pixels with NDCI values above -0.3.

SM 1. The difference for the index value between dry and wet peat soil. It shows the

same results of Figure 3. Their bands were loaded in Landsat 8.

SM 2. The relationship between the value of indices and fire area like Figure 4. (a)

NDPSI1, (b) NDPSI2, (c) NDPSI3, (d) NDPSI4, (e) NDWI, and (f) NDSI.

SM 3. The correlation coefficient of several thresholds of NDVI in all indices and

analysis pixels and area.

SM 4. p-value of several thresholds of NDVI in all indices.

Supplemental material

SM 1. The difference for the index value between dry and wet peat soil. It shows the

Band

same results of Figure 3. Their bands were loaded in Landsat 8.

Band

0.01

0.003

0.01

0.003

0.1

0.09

0.03

0.03

0.03

0.04

0.04

0.07

0.06

0.08

0.09

0.04

0.01

0.02

0.02

0.01

0.03

(a)

0.2

NDPSI1

0.0

r1 = 0.56

r2 = 0.63

-0.2

r0 = 0.29

-0.4

-0.2

r2 = 0.42

0.005

0.010

0.015

0.000

Ratio between fire area and unit

0.2

r1 = 0.68

-0.2

r2 = 0.053

-0.4

r0 = -0.15

0.010

0.015

(d)

0.0

NDPSI4

NDPSI3

(c)

0.0

0.005

Ratio between fire area and unit

r1 = 0.57

-0.2

r2 = -0.013

r0 = -0.18

-0.4

-0.6

-0.6

0.000

0.005

0.010

0.015

0.000

Ratio between fire area and unit

0.005

0.010

(e)

0.2

(f)

r0 = 0.29

r0 = 0.35

r1 = 0.33

r2 = 0.22

-0.4

-0.6

NDSI

0.0

-0.2

0.015

Ratio between fire area and unit

0.0

NDWI

r0 = 0.048

-0.6

0.000

0.2

r1 = 0.60

-0.4

-0.6

0.2

(b)

0.0

NDPSI2

0.2

r2 = 0.15

-0.2

r1 = -0.066

-0.4

-0.6

0.000

0.005

0.010

Ratio between fire area and unit

0.015

0.000

0.005

0.010

Ratio between fire area and unit

SM 2. The relationship between the value of indices and fire area like Figure 4.

0.015

SM 3. The correlation coefficient of several thresholds of NDVI in all indices and

NDVI

analysis pixels and area.

Threshold

NDPSI1

NDPSI2

NDPSI3

NDPSI4

NDWI

NDSI

Analysis pixels (×106)

Analysis area (×103 km2)

0.20

0.27

0.23

0.33

0.36

0.21

-0.34

0.18

0.16

0.25

0.48

0.51

0.61

0.54

0.27

-0.25

0.52

0.47

0.30

0.56

0.60

0.68

0.57

0.33

-0.07

1.21

1.09

0.35

0.58

0.61

0.60

0.49

0.28

0.03

1.91

1.72

0.40

0.61

0.60

0.39

0.31

0.23

0.07

2.46

2.22

0.45

0.62

0.51

0.16

0.08

0.22

0.13

3.03

2.72

0.50

0.63

0.42

0.05

-0.01

0.22

0.15

3.63

3.26

0.55

0.63

0.32

-0.01

-0.06

0.21

0.16

4.27

3.84

Original

0.29

0.05

-0.15

-0.18

0.35

0.29

6.79

6.11

NDVI

SM 4. p-value of several thresholds of NDVI in all indices.

Threshold

NDPSI1

NDPSI2

NDPSI3

NDPSI4

NDWI

NDSI

0.20

0.112

0.187

0.047

0.033

0.211

0.042

0.25

0.003

0.002

0.000

0.001

0.110

0.143

0.30

0.000

0.000

0.000

0.000

0.052

0.701

0.35

0.000

0.000

0.000

0.002

0.099

0.885

0.40

0.000

0.000

0.017

0.067

0.171

0.686

0.45

0.000

0.002

0.366

0.655

0.187

0.442

0.50

0.000

0.011

0.759

0.940

0.201

0.383

0.55

0.000

0.060

0.973

0.728

0.225

0.363

Original

0.082

0.781

0.384

0.287

0.037

0.090

...

参考文献をもっと見る