リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Identification and Analysis of Monoclonal Antibodies with Neutralizing Activity against Diverse SARS-CoV-2 Variants」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Identification and Analysis of Monoclonal Antibodies with Neutralizing Activity against Diverse SARS-CoV-2 Variants

Ishimaru, Hanako Nishimura, Mitsuhiro Tjan, Lidya Handayani Sutandhio, Silvia Marini, Maria Istiqomah Effendi, Gema Barlian Shigematsu, Hideki Kato, Koji Hasegawa, Natsumi Aoki, Kaito Kurahashi, Yukiya Furukawa, Koichi Shinohara, Mai Nakamura, Tomoka Arii, Jun Nagano, Tatsuya Nakamura, Sachiko Sano, Shigeru Iwata, Sachiyo Okamura, Shinya Mori, Yasuko 神戸大学

2023.06.29

概要

We identified neutralizing monoclonal antibodies against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants (including Omicron variants BA.5 and BA.2.75) from individuals who received two doses of mRNA vaccination after they had been infected with the D614G virus. We named them MO1, MO2, and MO3. Among them, MO1 showed particularly high neutralizing activity against authentic variants: D614G, Delta, BA.1, BA.1.1, BA.2, BA.2.75, and BA.5. Furthermore, MO1 suppressed BA.5 infection in hamsters. A structural analysis revealed that MO1 binds to the conserved epitope of seven variants, including Omicron variants BA.5 and BA.2.75, in the receptor-binding domain of the spike protein. MO1 targets an epitope conserved among Omicron variants BA.1, BA.2, and BA.5 in a unique binding mode. Our findings confirm that D614G-derived vaccination can induce neutralizing antibodies that recognize the epitopes conserved among the SARS-CoV-2 variants.

この論文で使われている画像

関連論文

参考文献

13. Geng Q, Shi K, Ye G, Zhang W, Aihara H, Li F. 2022. Structural basis for

human receptor recognition by SARS-CoV-2 omicron variant BA.1. J Virol

96:e0024922. https://doi.org/10.1128/jvi.00249-22.

14. Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He WT, Limbo O, Smith C,

Song G, Woehl J, Yang L, Abbott RK, Callaghan S, Garcia E, Hurtado J, Parren

M, Peng L, Ramirez S, Ricketts J, Ricciardi MJ, Rawlings SA, Wu NC, Yuan M,

Smith DM, Nemazee D, Teijaro JR, Voss JE, Wilson IA, Andrabi R, Briney B,

Landais E, Sok D, Jardine JG, Burton DR. 2020. Isolation of potent SARS-CoV-2

neutralizing antibodies and protection from disease in a small animal model.

Science 369:956–963. https://doi.org/10.1126/science.abc7520.

15. Yamasoba D, Kimura I, Nasser H, Morioka Y, Nao N, Ito J, Uriu K, Tsuda M,

Zahradnik J, Shirakawa K, Suzuki R, Kishimoto M, Kosugi Y, Kobiyama K,

Hara T, Toyoda M, Tanaka YL, Butlertanaka EP, Shimizu R, Ito H, Wang L,

Oda Y, Orba Y, Sasaki M, Nagata K, Yoshimatsu K, Asakura H, Nagashima

M, Sadamasu K, Yoshimura K, Kuramochi J, Seki M, Fujiki R, Kaneda A,

Shimada T, Nakada TA, Sakao S, Suzuki T, Ueno T, Takaori-Kondo A, Ishii

KJ, Schreiber G, Sawa H, Saito A, Irie T, Tanaka S, Matsuno K, Fukuhara T,

Ikeda T, Sato K, Genotype to Phenotype Japan (G2P-Japan) Consortium.

2022. Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike.

Cell 185:2103–2115.e19. https://doi.org/10.1016/j.cell.2022.04.035.

16. Westendorf K, Žentelis S, Wang L, Foster D, Vaillancourt P, Wiggin M,

Lovett E, van der Lee R, Hendle J, Pustilnik A, Sauder JM, Kraft L, Hwang Y,

Siegel RW, Chen J, Heinz BA, Higgs RE, Kallewaard NL, Jepson K, Goya R,

Smith MA, Collins DW, Pellacani D, Xiang P, de Puyraimond V, Ricicova M,

Devorkin L, Pritchard C, O'Neill A, Dalal K, Panwar P, Dhupar H, Garces FA,

Cohen CA, Dye JM, Huie KE, Badger CV, Kobasa D, Audet J, Freitas JJ,

Hassanali S, Hughes I, Munoz L, Palma HC, Ramamurthy B, Cross RW,

Geisbert TW, Menachery V, Lokugamage K, Borisevich V, et al. 2022. LYCoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell

Rep 39:110812. https://doi.org/10.1016/j.celrep.2022.110812.

17. Cao Y, Yisimayi A, Jian F, Song W, Xiao T, Wang L, Du S, Wang J, Li Q, Chen

X, Yu Y, Wang P, Zhang Z, Liu P, An R, Hao X, Wang Y, Wang J, Feng R, Sun

H, Zhao L, Zhang W, Zhao D, Zheng J, Yu L, Li C, Zhang N, Wang R, Niu X,

Yang S, Song X, Chai Y, Hu Y, Shi Y, Zheng L, Li Z, Gu Q, Shao F, Huang W,

Jin R, Shen Z, Wang Y, Wang X, Xiao J, Xie XS. 2022. BA.2.12.1, BA.4 and

BA.5 escape antibodies elicited by Omicron infection. Nature 608:

593–602. https://doi.org/10.1038/s41586-022-04980-y.

18. Dong J, Zost SJ, Greaney AJ, Starr TN, Dingens AS, Chen EC, Chen RE, Case JB,

Sutton RE, Gilchuk P, Rodriguez J, Armstrong E, Gainza C, Nargi RS, Binshtein

E, Xie X, Zhang X, Shi PY, Logue J, Weston S, McGrath ME, Frieman MB, Brady

T, Tuffy KM, Bright H, Loo YM, McTamney PM, Esser MT, Carnahan RH,

Diamond MS, Bloom JD, Crowe JE. Jr, 2021. Genetic and structural basis for

SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat Microbiol

6:1233–1244. https://doi.org/10.1038/s41564-021-00972-2.

19. Yamasoba D, Kosugi Y, Kimura I, Fujita S, Uriu K, Ito J, Sato K, Genotype to

Phenotype Japan (G2P-Japan) Consortium. 2022. Neutralisation sensitivity of SARS-CoV-2 omicron subvariants to therapeutic monoclonal antibodies. Lancet Infectious Diseases 22:942–943. https://doi.org/10.1016/

S1473-3099(22)00365-6.

20. Kumar S, Patel A, Lai L, Chakravarthy C, Valanparambil R, Reddy ES,

Gottimukkala K, Davis-Gardner ME, Edara VV, Linderman S, Nayak K, Dixit

K, Sharma P, Bajpai P, Singh V, Frank F, Cheedarla N, Verkerke HP, Neish

AS, Roback JD, Mantus G, Goel PK, Rahi M, Davis CW, Wrammert J,

Godbole S, Henry AR, Douek DC, Suthar MS, Ahmed R, Ortlund E, Sharma

A, Murali-Krishna K, Chandele A. 2022. Structural insights for neutralization of Omicron variants BA.1, BA.2, BA.4, and BA.5 by a broadly neutralizing SARS-CoV-2 antibody. Sci Adv 8:eadd2032. https://doi.org/10.1126/

sciadv.add2032.

21. Iketani S, Liu L, Guo Y, Liu L, Chan JF-W, Huang Y, Wang M, Luo Y, Yu J, Chu

H, Chik KK-H, Yuen TT-T, Yin MT, Sobieszczyk ME, Huang Y, Yuen K-Y, Wang

HH, Sheng Z, Ho DD. 2022. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 604:553–556. https://doi.org/10.1038/s41586-022

-04594-4.

22. Evans JP, Zeng C, Qu P, Faraone J, Zheng YM, Carlin C, Bednash JS, Zhou

T, Lozanski G, Mallampalli R, Saif LJ, Oltz EM, Mohler PJ, Xu K, Gumina RJ,

Liu SL. 2022. Neutralization of SARS-CoV-2 Omicron sub-lineages BA.1,

BA.1.1, and BA.2. Cell Host Microbe 30:1093–1102.e3. https://doi.org/10

.1016/j.chom.2022.04.014.

23. Wang Q, Iketani S, Li Z, Liu L, Guo Y, Huang Y, Bowen AD, Liu M, Wang M,

Yu J, Valdez R, Lauring AS, Sheng Z, Wang HH, Gordon A, Liu L, Ho DD.

2023. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and

XBB subvariants. Cell 186:279–286.e8. https://doi.org/10.1016/j.cell.2022

.12.018.

June 2023 Volume 97 Issue 6

Journal of Virology

24. Ren Z, Nishimura M, Tjan LH, Furukawa K, Kurahashi Y, Sutandhio S, Aoki K,

Hasegawa N, Arii J, Uto K, Matsui K, Sato I, Saegusa J, Godai N, Takeshita K,

Yamamoto M, Nagashima T, Mori Y. 2022. Large-scale serosurveillance of COVID19 in Japan: acquisition of neutralizing antibodies for Delta but not for Omicron

and requirement of booster vaccination to overcome the Omicron's outbreak.

PLoS One 17:e0266270. https://doi.org/10.1371/journal.pone.0266270.

25. Niwa H, Yamamura K, Miyazaki J. 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199.

https://doi.org/10.1016/0378-1119(91)90434-D.

26. Hsieh CL, Goldsmith JA, Schaub JM, DiVenere AM, Kuo HC, Javanmardi K, Le

KC, Wrapp D, Lee AG, Liu Y, Chou CW, Byrne PO, Hjorth CK, Johnson NV,

Ludes-Meyers J, Nguyen AW, Park J, Wang N, Amengor D, Lavinder JJ, Ippolito

GC, Maynard JA, Finkelstein IJ, McLellan JS. 2020. Structure-based design of

prefusion-stabilized SARS-CoV-2 spikes. Science 369:1501–1505. https://doi

.org/10.1126/science.abd0826.

27. Matsuyama S, Nao N, Shirato K, Kawase M, Saito S, Takayama I, Nagata N,

Sekizuka T, Katoh H, Kato F, Sakata M, Tahara M, Kutsuna S, Ohmagari N,

Kuroda M, Suzuki T, Kageyama T, Takeda M. 2020. Enhanced isolation of

SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A 117:

7001–7003. https://doi.org/10.1073/pnas.2002589117.

28. Furukawa K, Tjan LH, Sutandhio S, Kurahashi Y, Iwata S, Tohma Y, Sano S,

Nakamura S, Nishimura M, Arii J, Kiriu T, Yamamoto M, Nagano T, Nishimura

Y, Mori Y. 2021. Cross-neutralizing activity against SARS-CoV-2 variants in

COVID-19 patients: comparison of 4 waves of the pandemic in Japan. Open

Forum Infect Dis 8:ofab430. https://doi.org/10.1093/ofid/ofab430.

29. Mastronarde DN. 2005. Automated electron microscope tomography using

robust prediction of specimen movements. J Struct Biol 152:36–51. https://

doi.org/10.1016/j.jsb.2005.07.007.

30. Yonekura K, Maki-Yonekura S, Naitow H, Hamaguchi T, Takaba K. 2021.

Machine learning-based real-time object locator/evaluator for cryo-EM

data collection. Commun Biol 4:1044. https://doi.org/10.1038/s42003-021

-02577-1.

31. Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E,

Scheres SH. 2018. New tools for automated high-resolution cryo-EM

structure determination in RELION-3. Elife 7:e42166. https://doi.org/10

.7554/eLife.42166.

32. Rohou A, Grigorieff N. 2015. CTFFIND4: fast and accurate defocus estimation

from electron micrographs. J Struct Biol 192:216–221. https://doi.org/10.1016/

j.jsb.2015.08.008.

33. Wagner T, Merino F, Stabrin M, Moriya T, Antoni C, Apelbaum A, Hagel P,

Sitsel O, Raisch T, Prumbaum D, Quentin D, Roderer D, Tacke S, Siebolds

B, Schubert E, Shaikh TR, Lill P, Gatsogiannis C, Raunser S. 2019. SPHIREcrYOLO is a fast and accurate fully automated particle picker for cryo-EM.

Commun Biol 2:218. https://doi.org/10.1038/s42003-019-0437-z.

34. Yin W, Xu Y, Xu P, Cao X, Wu C, Gu C, He X, Wang X, Huang S, Yuan Q, Wu

K, Hu W, Huang Z, Liu J, Wang Z, Jia F, Xia K, Liu P, Wang X, Song B, Zheng

J, Jiang H, Cheng X, Jiang Y, Deng S-J, Xu HE. 2022. Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Science 375:

1048–1053. https://doi.org/10.1126/science.abn8863.

35. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O,

Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer

C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R,

Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger

M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O,

Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. 2021. Highly accurate

protein structure prediction with AlphaFold. Nature 596:583–589.

https://doi.org/10.1038/s41586-021-03819-2.

36. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng

EC, Ferrin TE. 2004. UCSF Chimera–a visualization system for exploratory

research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10

.1002/jcc.20084.

37. Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501. https://doi

.org/10.1107/S0907444910007493.

38. Liebschner D, Afonine PV, Baker ML, Bunkoczi G, Chen VB, Croll TI, Hintze B,

Hung LW, Jain S, McCoy AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG,

Read RJ, Richardson JS, Richardson DC, Sammito MD, Sobolev OV, Stockwell

DH, Terwilliger TC, Urzhumtsev AG, Videau LL, Williams CJ, Adams PD. 2019.

Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75:

861–877. https://doi.org/10.1107/S2059798319011471.

39. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH,

Ferrin TE. 2021. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30:70–82. https://doi.org/10.1002/pro.3943.

10.1128/jvi.00286-23

16

Downloaded from https://journals.asm.org/journal/jvi on 09 August 2023 by 133.30.169.29.

Neutralizing Antibodies for Variants of SARS-CoV-2

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る