リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Differential Roles of Dendritic Cells in Expanding CD4 T Cells in Sepsis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Differential Roles of Dendritic Cells in Expanding CD4 T Cells in Sepsis

Darkwah Samuel 三重大学

2021.01.05

概要

Sepsis is a systemically dysregulated inflammatory syndrome, in which dendritic cells (DCs) play a critical role in coordinating aberrant immunity. The aim of this study is to shed light on the differential roles played by systemic versus mucosal DCs in regulating immune responses in sepsis. We identified a differential impact of the systemic and mucosal DCs on proliferating allogenic CD4 T cells in a mouse model of sepsis. Despite the fact that the frequency of CD4 T cells was reduced in septic mice, septic mesenteric lymph node (MLN) DCs proved superior to septic spleen (SP) DCs in expanding allogeneic CD4 T cells. Moreover, septic MLN DCs markedly augmented the surface expression of MHC class II and CD40, as well as the messaging of interleukin-1β(IL-1β). Interestingly, IL-1β-treated CD4 T cells expanded in a dose-dependent manner, suggesting that this cytokine acts as a key mediator of MLN DCs in promoting septic inflammation. Thus, mucosal and systemic DCs were found to be functionally different in the way CD4 T cells respond during sepsis. Our study provides a molecular basis for DC activity, which can be differential in nature depending on location, whereby it induces septic inflammation or immune-paralysis.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Boomer, J.S.; To, K.; Chang, K.C.; Takasu, O.; Osborne, D.F.; Walton, A.H.; Bricker, T.L.; Jarman, S.D., 2nd;

Kreisel, D.; Krupnick, A.S.; et al. Immunosuppression in patients who die of sepsis and multiple organ

failure. JAMA 2011, 306, 2594–2605. [CrossRef] [PubMed]

Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851. [CrossRef]

[PubMed]

Shimaoka, M.; Park, E.J. Advances in understanding sepsis. Eur. J. Anaesthesiol. Suppl. 2008, 42, 146–153.

[CrossRef] [PubMed]

Hotchkiss, R.S.; Monneret, G.; Payen, D. Sepsis-induced immunosuppression: From cellular dysfunctions to

immunotherapy. Nat. Rev. Immunol. 2013, 13, 862–874. [CrossRef] [PubMed]

Delano, M.J.; Ward, P.A. Sepsis-induced immune dysfunction: Can immune therapies reduce mortality?

J. Clin. Investig. 2016, 126, 23–31. [CrossRef] [PubMed]

Cheng, S.C.; Scicluna, B.P.; Arts, R.J.; Gresnigt, M.S.; Lachmandas, E.; Giamarellos-Bourboulis, E.J.; Kox, M.;

Manjeri, G.R.; Wagenaars, J.A.; Cremer, O.L.; et al. Broad defects in the energy metabolism of leukocytes

underlie immunoparalysis in sepsis. Nat. Immunol. 2016, 17, 406–413. [CrossRef]

Hotchkiss, R.S.; Nicholson, D.W. Apoptosis and caspases regulate death and inflammation in sepsis.

Nat. Rev. Immunol. 2006, 6, 813–822. [CrossRef]

Steinman, R.M. Linking innate to adaptive immunity through dendritic cells. Novartis Found. Symp. 2006,

279, 101–109.

Banchereau, J.; Steinman, R.M. Dendritic cells and the control of immunity. Nature 1998, 392, 245–252.

[CrossRef]

Dzionek, A.; Inagaki, Y.; Okawa, K.; Nagafune, J.; Rock, J.; Sohma, Y.; Winkels, G.; Zysk, M.; Yamaguchi, Y.;

Schmitz, J. Plasmacytoid dendritic cells: From specific surface markers to specific cellular functions.

Hum. Immunol. 2002, 63, 1133–1148. [CrossRef]

Shigematsu, H.; Reizis, B.; Iwasaki, H.; Mizuno, S.; Hu, D.; Traver, D.; Leder, P.; Sakaguchi, N.; Akashi, K.

Plasmacytoid dendritic cells activate lymphoid-specific genetic programs irrespective of their cellular origin.

Immunity 2004, 21, 43–53. [CrossRef] [PubMed]

Calabro, S.; Liu, D.; Gallman, A.; Nascimento, M.S.; Yu, Z.; Zhang, T.T.; Chen, P.; Zhang, B.; Xu, L.;

Gowthaman, U.; et al. Differential Intrasplenic Migration of Dendritic Cell Subsets Tailors Adaptive

Immunity. Cell Rep. 2016, 16, 2472–2485. [CrossRef] [PubMed]

Allenspach, E.J.; Lemos, M.P.; Porrett, P.M.; Turka, L.A.; Laufer, T.M. Migratory and lymphoid-resident dendritic

cells cooperate to efficiently prime naive CD4 T cells. Immunity 2008, 29, 795–806. [CrossRef] [PubMed]

Biomedicines 2019, 7, 52

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

15 of 18

Bonasio, R.; von Andrian, U.H. Generation, migration and function of circulating dendritic cells.

Curr. Opin. Immunol. 2006, 18, 503–511. [CrossRef] [PubMed]

Alvarez, D.; Vollmann, E.H.; von Andrian, U.H. Mechanisms and consequences of dendritic cell migration.

Immunity 2008, 29, 325–342. [CrossRef] [PubMed]

Poehlmann, H.; Schefold, J.C.; Zuckermann-Becker, H.; Volk, H.D.; Meisel, C. Phenotype changes and

impaired function of dendritic cell subsets in patients with sepsis: A prospective observational analysis.

Crit. Care 2009, 13, R119. [CrossRef] [PubMed]

Grimaldi, D.; Louis, S.; Pene, F.; Sirgo, G.; Rousseau, C.; Claessens, Y.E.; Vimeux, L.; Cariou, A.; Mira, J.P.;

Hosmalin, A.; et al. Profound and persistent decrease of circulating dendritic cells is associated with

ICU-acquired infection in patients with septic shock. Intensive Care Med. 2011, 37, 1438–1446. [CrossRef]

Ding, Y.; Chung, C.S.; Newton, S.; Chen, Y.; Carlton, S.; Albina, J.E.; Ayala, A. Polymicrobial sepsis induces

divergent effects on splenic and peritoneal dendritic cell function in mice. Shock 2004, 22, 137–144. [CrossRef]

Benjamim, C.F.; Lundy, S.K.; Lukacs, N.W.; Hogaboam, C.M.; Kunkel, S.L. Reversal of long-term

sepsis-induced immunosuppression by dendritic cells. Blood 2005, 105, 3588–3595. [CrossRef]

Scumpia, P.O.; McAuliffe, P.F.; O’Malley, K.A.; Ungaro, R.; Uchida, T.; Matsumoto, T.; Remick, D.G.;

Clare-Salzler, M.J.; Moldawer, L.L.; Efron, P.A. CD11c+ dendritic cells are required for survival in murine

polymicrobial sepsis. J. Immunol. 2005, 175, 3282–3286. [CrossRef]

Pastille, E.; Didovic, S.; Brauckmann, D.; Rani, M.; Agrawal, H.; Schade, F.U.; Zhang, Y.; Flohe, S.B.

Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression

after polymicrobial sepsis. J. Immunol. 2011, 186, 977–986. [CrossRef] [PubMed]

Faivre, V.; Lukaszewicz, A.C.; Alves, A.; Charron, D.; Payen, D.; Haziot, A. Accelerated in vitro differentiation

of blood monocytes into dendritic cells in human sepsis. Clin. Exp. Immunol. 2007, 147, 426–439. [CrossRef]

[PubMed]

Steinbrink, K.; Graulich, E.; Kubsch, S.; Knop, J.; Enk, A.H. CD4(+) and CD8(+) anergic T cells induced

by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood 2002,

99, 2468–2476. [CrossRef] [PubMed]

Dejager, L.; Pinheiro, I.; Dejonckheere, E.; Libert, C. Cecal ligation and puncture: The gold standard model

for polymicrobial sepsis? Trends Microbiol. 2011, 19, 198–208. [CrossRef] [PubMed]

Seemann, S.; Zohles, F.; Lupp, A. Comprehensive comparison of three different animal models for systemic

inflammation. J. Biomed. Sci. 2017, 24, 60. [CrossRef] [PubMed]

Doi, K.; Leelahavanichkul, A.; Yuen, P.S.; Star, R.A. Animal models of sepsis and sepsis-induced kidney

injury. J. Clin. Investig. 2009, 119, 2868–2878. [CrossRef] [PubMed]

Tourkova, I.L.; Yurkovetsky, Z.R.; Shurin, M.R.; Shurin, G.V. Mechanisms of dendritic cell-induced T cell

proliferation in the primary MLR assay. Immunol. Lett. 2001, 78, 75–82. [CrossRef]

Ben-Sasson, S.Z.; Hu-Li, J.; Quiel, J.; Cauchetaux, S.; Ratner, M.; Shapira, I.; Dinarello, C.A.; Paul, W.E. IL-1

acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc. Natl. Acad.

Sci. USA 2009, 106, 7119–7124. [CrossRef]

Walsh, K.P.; Mills, K.H. Dendritic cells and other innate determinants of T helper cell polarisation.

Trends Immunol. 2013, 34, 521–530. [CrossRef]

Hotchkiss, R.S.; Chang, K.C.; Swanson, P.E.; Tinsley, K.W.; Hui, J.J.; Klender, P.; Xanthoudakis, S.; Roy, S.;

Black, C.; Grimm, E.; et al. Caspase inhibitors improve survival in sepsis: A critical role of the lymphocyte.

Nat. Immunol. 2000, 1, 496–501. [CrossRef]

Markwart, R.; Condotta, S.A.; Requardt, R.P.; Borken, F.; Schubert, K.; Weigel, C.; Bauer, M.; Griffith, T.S.;

Forster, M.; Brunkhorst, F.M.; et al. Immunosuppression after sepsis: Systemic inflammation and sepsis

induce a loss of naive T-cells but no enduring cell-autonomous defects in T-cell function. PLoS ONE 2014,

9, e115094. [CrossRef] [PubMed]

Ayala, A.; Xin Xu, Y.; Ayala, C.A.; Sonefeld, D.E.; Karr, S.M.; Evans, T.A.; Chaudry, I.H. Increased mucosal

B-lymphocyte apoptosis during polymicrobial sepsis is a Fas ligand but not an endotoxin-mediated process.

Blood 1998, 91, 1362–1372. [PubMed]

Hiramatsu, M.; Hotchkiss, R.S.; Karl, I.E.; Buchman, T.G. Cecal ligation and puncture (CLP) induces apoptosis

in thymus, spleen, lung, and gut by an endotoxin and TNF-independent pathway. Shock 1997, 7, 247–253.

[CrossRef] [PubMed]

Biomedicines 2019, 7, 52

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

16 of 18

de Jong, J.M.; Schuurhuis, D.H.; Ioan-Facsinay, A.; Welling, M.M.; Camps, M.G.; van der Voort, E.I.;

Huizinga, T.W.; Ossendorp, F.; Verbeek, J.S.; Toes, R.E. Dendritic cells, but not macrophages or B cells, activate

major histocompatibility complex class II-restricted CD4+ T cells upon immune-complex uptake in vivo.

Immunology 2006, 119, 499–506. [CrossRef] [PubMed]

Ma, D.Y.; Clark, E.A. The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol. 2009, 21, 265–272.

[CrossRef] [PubMed]

Tamoutounour, S.; Guilliams, M.; Montanana Sanchis, F.; Liu, H.; Terhorst, D.; Malosse, C.; Pollet, E.;

Ardouin, L.; Luche, H.; Sanchez, C.; et al. Origins and functional specialization of macrophages and of

conventional and monocyte-derived dendritic cells in mouse skin. Immunity 2013, 39, 925–938. [CrossRef]

Poulin, L.F.; Lasseaux, C.; Chamaillard, M. Understanding the Cellular Origin of the Mononuclear Phagocyte

System Sheds Light on the Myeloid Postulate of Immune Paralysis in Sepsis. Front. Immunol. 2018, 9, 823.

[CrossRef]

Guilliams, M.; Dutertre, C.A.; Scott, C.L.; McGovern, N.; Sichien, D.; Chakarov, S.; Van Gassen, S.; Chen, J.;

Poidinger, M.; De Prijck, S.; et al. Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across

Tissues and Species. Immunity 2016, 45, 669–684. [CrossRef]

Ganem, M.B.; De Marzi, M.C.; Fernandez-Lynch, M.J.; Jancic, C.; Vermeulen, M.; Geffner, J.; Mariuzza, R.A.;

Fernandez, M.M.; Malchiodi, E.L. Uptake and intracellular trafficking of superantigens in dendritic cells.

PLoS ONE 2013, 8, e66244. [CrossRef]

Fuentes-Duculan, J.; Suarez-Farinas, M.; Zaba, L.C.; Nograles, K.E.; Pierson, K.C.; Mitsui, H.; Pensabene, C.A.;

Kzhyshkowska, J.; Krueger, J.G.; Lowes, M.A. A subpopulation of CD163-positive macrophages is classically

activated in psoriasis. J. Investig. Dermatol. 2010, 130, 2412–2422. [CrossRef]

Yu, Y.R.; O’Koren, E.G.; Hotten, D.F.; Kan, M.J.; Kopin, D.; Nelson, E.R.; Que, L.; Gunn, M.D. A Protocol for the

Comprehensive Flow Cytometric Analysis of Immune Cells in Normal and Inflamed Murine Non-Lymphoid

Tissues. PLoS ONE 2016, 11, e0150606. [CrossRef] [PubMed]

Sheng, J.; Chen, Q.; Soncin, I.; Ng, S.L.; Karjalainen, K.; Ruedl, C. A Discrete Subset of Monocyte-Derived

Cells among Typical Conventional Type 2 Dendritic Cells Can Efficiently Cross-Present. Cell Rep. 2017,

21, 1203–1214. [CrossRef] [PubMed]

Nakano, H.; Lin, K.L.; Yanagita, M.; Charbonneau, C.; Cook, D.N.; Kakiuchi, T.; Gunn, M.D. Blood-derived

inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat. Immunol.

2009, 10, 394–402. [CrossRef] [PubMed]

Nakano, H.; Burgents, J.E.; Nakano, K.; Whitehead, G.S.; Cheong, C.; Bortner, C.D.; Cook, D.N. Migratory

properties of pulmonary dendritic cells are determined by their developmental lineage. Mucosal Immunol.

2013, 6, 678–691. [CrossRef] [PubMed]

Symons, J.A.; Bundick, R.V.; Suckling, A.J.; Rumsby, M.G. Cerebrospinal fluid interleukin 1 like activity

during chronic relapsing experimental allergic encephalomyelitis. Clin. Exp. Immunol. 1987, 68, 648–654.

[PubMed]

Jensen, I.J.; Sjaastad, F.V.; Griffith, T.S.; Badovinac, V.P. Sepsis-Induced T Cell Immunoparalysis: The Ins and

Outs of Impaired T Cell Immunity. J. Immunol. 2018, 200, 1543–1553. [PubMed]

Eltom, S.; Belvisi, M.G.; Yew-Booth, L.; Dekkak, B.; Maher, S.A.; Dubuis, E.D.; Jones, V.; Fitzgerald, K.A.;

Birrell, M.A. TLR4 activation induces IL-1beta release via an IPAF dependent but caspase 1/11/8 independent

pathway in the lung. Respir. Res. 2014, 15, 87. [CrossRef] [PubMed]

Yang, H.; Hreggvidsdottir, H.S.; Palmblad, K.; Wang, H.; Ochani, M.; Li, J.; Lu, B.; Chavan, S.; Rosas-Ballina, M.;

Al-Abed, Y.; et al. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of

macrophage cytokine release. Proc. Natl. Acad. Sci. USA 2010, 107, 11942–11947. [CrossRef]

Eskan, M.A.; Benakanakere, M.R.; Rose, B.G.; Zhang, P.; Zhao, J.; Stathopoulou, P.; Fujioka, D.; Kinane, D.F.

Interleukin-1beta modulates proinflammatory cytokine production in human epithelial cells. Infect. Immun.

2008, 76, 2080–2089. [CrossRef]

Deng, M.; Ma, T.; Yan, Z.; Zettel, K.R.; Scott, M.J.; Liao, H.; Frank, A.; Morelli, A.E.; Sodhi, C.P.;

Hackam, D.J.; et al. Toll-like Receptor 4 Signaling on Dendritic Cells Suppresses Polymorphonuclear

Leukocyte CXCR2 Expression and Trafficking via Interleukin 10 During Intra-abdominal Sepsis. J. Infect. Dis.

2016, 213, 1280–1288. [CrossRef]

Biomedicines 2019, 7, 52

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

17 of 18

Pene, F.; Courtine, E.; Ouaaz, F.; Zuber, B.; Sauneuf, B.; Sirgo, G.; Rousseau, C.; Toubiana, J.; Balloy, V.;

Chignard, M.; et al. Toll-like receptors 2 and 4 contribute to sepsis-induced depletion of spleen dendritic

cells. Infect. Immun. 2009, 77, 5651–5658. [CrossRef] [PubMed]

Fanning, L.R.; Hegerfeldt, Y.; Tary-Lehmann, M.; Lesniewski, M.; Maciejewski, J.; Weitzel, R.P.; Kozik, M.;

Finney, M.; Lazarus, H.M.; Paul, P.; et al. Allogeneic transplantation of multiple umbilical cord blood units in

adults: Role of pretransplant-mixed lymphocyte reaction to predict host-vs-graft rejection. Leukemia 2008,

22, 1786–1790. [CrossRef]

Hayry, P.; Defendi, V. Mixed lymphocyte cultures produce effector cells: Model in vitro for allograft rejection.

Science 1970, 168, 133–135. [CrossRef] [PubMed]

Bradley, B.A.; Edwards, J.M.; Dunn, D.C.; Calne, R.Y. Quantitation of mixed lymphocyte reaction by gene

dosage phenomenon. Nat. New Biol. 1972, 240, 54–56. [CrossRef]

Hotta, K.; Oura, T.; Dehnadi, A.; Boskovic, S.; Matsunami, M.; Rosales, I.; Smith, R.N.; Colvin, R.B.;

Cosimi, A.B.; Kawai, T. Long-term Nonhuman Primate Renal Allograft Survival Without Ongoing

Immunosuppression in Recipients of Delayed Donor Bone Marrow Transplantation. Transplantation 2018,

102, e128–e136. [CrossRef] [PubMed]

Zou, S.; Shen, X.; Tang, Y.; Fu, Z.; Zheng, Q.; Wang, Q. Astilbin suppresses acute heart allograft rejection by

inhibiting maturation and function of dendritic cells in mice. Transpl. Proc. 2010, 42, 3798–3802. [CrossRef]

[PubMed]

Zhou, J.; He, W.; Luo, G.; Wu, J. Mixed lymphocyte reaction induced by multiple alloantigens and the role

for IL-10 in proliferation inhibition. Burns Trauma 2014, 2, 24–28.

Lewis, A.J.; Seymour, C.W.; Rosengart, M.R. Current Murine Models of Sepsis. Surg. Infect. (Larchmt) 2016,

17, 385–393. [CrossRef]

Gautier, E.L.; Huby, T.; Saint-Charles, F.; Ouzilleau, B.; Chapman, M.J.; Lesnik, P. Enhanced dendritic

cell survival attenuates lipopolysaccharide-induced immunosuppression and increases resistance to lethal

endotoxic shock. J. Immunol. 2008, 180, 6941–6946. [CrossRef]

Li, C.C.; Munitic, I.; Mittelstadt, P.R.; Castro, E.; Ashwell, J.D. Suppression of Dendritic Cell-Derived IL-12 by

Endogenous Glucocorticoids Is Protective in LPS-Induced Sepsis. PLoS Biol. 2015, 13, e1002269. [CrossRef]

Hashimoto, D.; Miller, J.; Merad, M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 2011,

35, 323–335. [CrossRef] [PubMed]

Eisenbarth, S.C. Dendritic cell subsets in T cell programming: Location dictates function. Nat. Rev. Immunol.

2019, 19, 89–103. [CrossRef] [PubMed]

Grailer, J.J.; Fattahi, F.; Dick, R.S.; Zetoune, F.S.; Ward, P.A. Cutting edge: Critical role for C5aRs in the

development of septic lymphopenia in mice. J. Immunol. 2015, 194, 868–872. [CrossRef] [PubMed]

Deitch, E.A. Gut-origin sepsis: Evolution of a concept. Surgeon 2012, 10, 350–356. [CrossRef] [PubMed]

Krezalek, M.A.; DeFazio, J.; Zaborina, O.; Zaborin, A.; Alverdy, J.C. The Shift of an Intestinal “Microbiome”

to a “Pathobiome” Governs the Course and Outcome of Sepsis Following Surgical Injury. Shock 2016,

45, 475–482. [CrossRef] [PubMed]

Tinsley, K.W.; Grayson, M.H.; Swanson, P.E.; Drewry, A.M.; Chang, K.C.; Karl, I.E.; Hotchkiss, R.S. Sepsis

induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells. J. Immunol.

2003, 171, 909–914. [CrossRef]

Flohe, S.B.; Agrawal, H.; Schmitz, D.; Gertz, M.; Flohe, S.; Schade, F.U. Dendritic cells during polymicrobial

sepsis rapidly mature but fail to initiate a protective Th1-type immune response. J. Leukoc. Biol. 2006,

79, 473–481. [CrossRef]

Schindler, D.; Gutierrez, M.G.; Beineke, A.; Rauter, Y.; Rohde, M.; Foster, S.; Goldmann, O.; Medina, E.

Dendritic cells are central coordinators of the host immune response to Staphylococcus aureus bloodstream

infection. Am. J. Pathol. 2012, 181, 1327–1337. [CrossRef]

Cavassani, K.A.; Carson, W.F.; Moreira, A.P.; Wen, H.; Schaller, M.A.; Ishii, M.; Lindell, D.M.; Dou, Y.;

Lukacs, N.W.; Keshamouni, V.G.; et al. The post sepsis-induced expansion and enhanced function of

regulatory T cells create an environment to potentiate tumor growth. Blood 2010, 115, 4403–4411. [CrossRef]

Kuhlhorn, F.; Rath, M.; Schmoeckel, K.; Cziupka, K.; Nguyen, H.H.; Hildebrandt, P.; Hunig, T.; Sparwasser, T.;

Huehn, J.; Potschke, C.; et al. Foxp3+ regulatory T cells are required for recovery from severe sepsis.

PLoS ONE 2013, 8, e65109. [CrossRef]

Biomedicines 2019, 7, 52

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

18 of 18

Heath, W.R.; Carbone, F.R. Dendritic cell subsets in primary and secondary T cell responses at body surfaces.

Nat. Immunol. 2009, 10, 1237–1244. [CrossRef] [PubMed]

Merad, M.; Sathe, P.; Helft, J.; Miller, J.; Mortha, A. The dendritic cell lineage: Ontogeny and function of

dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 2013,

31, 563–604. [CrossRef] [PubMed]

Nakano, H.; Yanagita, M.; Gunn, M.D. CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen

display characteristics of plasmacytoid dendritic cells. J. Exp. Med. 2001, 194, 1171–1178. [CrossRef]

[PubMed]

Gilliet, M.; Cao, W.; Liu, Y.J. Plasmacytoid dendritic cells: Sensing nucleic acids in viral infection and

autoimmune diseases. Nat. Rev. Immunol. 2008, 8, 594–606. [CrossRef] [PubMed]

Reizis, B.; Bunin, A.; Ghosh, H.S.; Lewis, K.L.; Sisirak, V. Plasmacytoid dendritic cells: Recent progress and

open questions. Annu. Rev. Immunol. 2011, 29, 163–183. [CrossRef] [PubMed]

Hotchkiss, R.S.; Tinsley, K.W.; Swanson, P.E.; Grayson, M.H.; Osborne, D.F.; Wagner, T.H.; Cobb, J.P.;

Coopersmith, C.; Karl, I.E. Depletion of dendritic cells, but not macrophages, in patients with sepsis.

J. Immunol. 2002, 168, 2493–2500. [CrossRef] [PubMed]

Elsayh, K.I.; Zahran, A.M.; Lotfy Mohamad, I.; Aly, S.S. Dendritic cells in childhood sepsis. J. Crit. Care 2013,

28, 881.e7–881.e13. [CrossRef]

Efron, P.A.; Martins, A.; Minnich, D.; Tinsley, K.; Ungaro, R.; Bahjat, F.R.; Hotchkiss, R.; Clare-Salzler, M.;

Moldawer, L.L. Characterization of the systemic loss of dendritic cells in murine lymph nodes during

polymicrobial sepsis. J. Immunol. 2004, 173, 3035–3043. [CrossRef]

Hirako, I.C.; Ataide, M.A.; Faustino, L.; Assis, P.A.; Sorensen, E.W.; Ueta, H.; Araujo, N.M.; Menezes, G.B.;

Luster, A.D.; Gazzinelli, R.T. Splenic differentiation and emergence of CCR5(+)CXCL9(+)CXCL10(+)

monocyte-derived dendritic cells in the brain during cerebral malaria. Nat. Commun. 2016, 7, 13277.

[CrossRef]

Cuenca, A.G.; Delano, M.J.; Kelly-Scumpia, K.M.; Moldawer, L.L.; Efron, P.A. Cecal ligation and puncture.

Curr. Protoc. Immunol. 2010, 91. [CrossRef]

Ruiz, S.; Vardon-Bounes, F.; Merlet-Dupuy, V.; Conil, J.M.; Buleon, M.; Fourcade, O.; Tack, I.; Minville, V.

Sepsis modeling in mice: Ligation length is a major severity factor in cecal ligation and puncture. Intensive Care

Med. Exp. 2016, 4, 22. [CrossRef] [PubMed]

Li, J.L.; Li, G.; Jing, X.Z.; Li, Y.F.; Ye, Q.Y.; Jia, H.H.; Liu, S.H.; Li, X.J.; Li, H.; Huang, R.; et al. Assessment

of clinical sepsis-associated biomarkers in a septic mouse model. J. Int. Med. Re.s 2018, 46, 2410–2422.

[CrossRef] [PubMed]

Xiao, H.; Siddiqui, J.; Remick, D.G. Mechanisms of mortality in early and late sepsis. Infect. Immun. 2006,

74, 5227–5235. [CrossRef] [PubMed]

Park, E.J.; Takahashi, I.; Ikeda, J.; Kawahara, K.; Okamoto, T.; Kweon, M.N.; Fukuyama, S.; Groh, V.; Spies, T.;

Obata, Y.; et al. Clonal expansion of double-positive intraepithelial lymphocytes by MHC class I-related

chain A expressed in mouse small intestinal epithelium. J. Immunol. 2003, 171, 4131–4139. [CrossRef]

Newland, A.; Russ, G.; Krishnan, R. Natural killer cells prime the responsiveness of autologous CD4+ T

cells to CTLA4-Ig and interleukin-10 mediated inhibition in an allogeneic dendritic cell-mixed lymphocyte

reaction. Immunology 2006, 118, 216–223. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Supplemental Figure S1

CLP (+)

CD11c

CD11c

CD11c

CD4

CD11c

B220

B220

MLN

B220

CD11c

CD4

PP

CD11c

PLN

B220

B220

B220

B220

CD4

SP

CD11c

CD4

B220

B220

B220

CD4

CD4

B220

B220

B220

CD4

B220

B220

B220

CLP (-)

CD4

CD11c

Supplemental Figure S1. The representative dot-plots are shown for sepsis-induced

changes in ratio of CD4+ T cells, CD11c+ DCs, and B220+ B cells in four different tissues

(SP, MLN, PP, and PLN). For the PLN, inguinal LNs were isolated and used in this assay.

CLP (-) and CLP (+) indicate control steady state and CLP-induced sepsis mice,

respectively. The single-cell suspensions prepared from the tissues of three mice per

group were subjected to antibody staining and flow-cytometry analysis. Data are

representative of at least three independent experiments that show similar results.

Supplemental Figure S2

A (CD3-B220-Gr-1-TER119- cells)

CLP (-)

B (CD3-B220-Gr-1-TER119-CD11c+ cells)

CLP (+)

MHC class II

30000

MHC class II

p < 0.06

MFI

20000

SP

CLP (-)

CLP (+)

10000

MLN

CD11c

SP

MLN

Supplemental Figure S2. Sepsis-induced change in expression of MHC class II on CD3B220-Gr-1-TER119-CD11c+ DCs. (A) Dot plots indicate the representative results of flow

cytometry in which CD3-B220-Gr-1-TER119- cells stained with mAbs to CD11c and MHC

class II were analyzed. (B) The bar graph represents the mean ± SEM for MFI obtained

from four different mice, in which green and purple bars indicate without (-) and with (+)

CLP, respectively. MFI, mean fluorescent intensity. *0.01 < p < 0.05.

Supplemental Figure S3

CD206

FcR1

100

SP MLN

SP MLN

CCR2

MFI

SP MLN

SP MLN

2000

MFI

2000

SP MLN

Ly6c

3000

2000

1000

SP MLN

2000

CLP (-)

CLP (+)

1000

CD11b

6000

CD107b

3000

4000

2000

2000

1000

SP MLN

SP MLN

SP MLN

CD206

FcR1

2000

Ly6c

3000

2000

1000

SP MLN

1000

SP MLN

CCR2

CCR7

2000

1000

SP MLN

100

m"

400

CCR7

200

Lし

800

4000

4000

F4/80

―~

MFI

300

200

200

ーロ ︱

SP MLN

SP MLN

400

MFI

200

MFI

MFI

400

6000

―皿

500

CD107b

600

皿 一屈

訓︱

1000

C (CD3-B220-Gr-1-TER119-CD11c+MHC class II+ cells)

1000

CD11b

2000

ぃ 一し ︱訓 ︱

F4/80

1500

い""

︱いL︱且 ︱

しl

B (CD3-B220-Gr-1-TER119- cells)

CD11c

り︱h

CD3/B220/

Gr-1/TER119

CD3-B220Gr-1-TER119cells

Analysis for

expression of

CD11c+

MHC class II+ inflammatory

DC markers

cells

MHC class II

SSC

SP or MLN cells

SP MLN

CLP (-)

CLP (+)

SP MLN

Supplemental Figure S3. Sepsis-induced change in expression of inflammatory DC

markers. (A) The way of gating the cells for analyzing expression in inflammatory DC

markers is shown. After staining total mononuclear cells from SP or MLN with mAbs to

CD3, B220, Gr-1, TER119, CD11c, and MHC class II, the cells double-positive for CD11c

and MHC class II were gated from CD3-B220-Gr-1-TER119- cells for further analysis.

CD3-B220-Gr-1-TER119- cells (B) and CD3-B220-Gr-1-TER119-CD11c+MHC class II+

cells (C) were analyzed for their expressions of the markers (F4/80, CD11b, CD107b,

FcR1, CD206, or Ly6c) and chemokine receptors (CCR2 and CCR7). The single-cell

suspensions prepared from combined tissues of three mice per group were subjected to

antibody staining and flow-cytometry analysis. Bar graphs represent the mean ± SEM

obtained from two to three independent experiments.

Supplemental Figure S4

% of positive cells

60

% of positive cells

CD3-B220-Gr-1-TER119-CD11c+MHC class II+ cells

60

F4/80

60

60

40

40

40

20

20

20

FcR1

60

CD206

60

40

40

40

20

20

20

SP MLN

60

CCR2

60

40

40

20

20

SP MLN

CD107b

SP MLN

SP MLN

SP MLN

SP MLN

% of positive cells

CD11b

Ly6c

SP MLN

CCR7

CLP (-)

CLP (+)

SP MLN

Supplemental Figure S4. Sepsis-induced change in ratio of inflammatory DC-marker

expressing cells. Ratio of the cells that express the markers (F4/80, CD11b, CD107b,

FcR1, CD206, or Ly6c) and chemokine receptors (CCR2 and CCR7) was measured to

total CD3-B220-Gr-1-TER119-CD11c+MHC class II+ cells. The single-cell suspensions

prepared from combined tissues of three mice per group were subjected to antibody staining

and flow-cytometry analysis. Bar graphs represent the mean ± SEM obtained from two to

three independent experiments.

Supplemental Figure S5

Count

CD4 T cells (isolated)

2.2%

3.0%

2.6%

3.5%

CFSE

CFSE

CFSE

CFSE

10

100

TNF- (ng/mL)

Supplemental Figure S5. TNF- has no effect on CD4 T-cell proliferation. The CD4 T cells

were isolated from single-cell suspensions of SP of Balb/c mice, fluorescently labeled with

CFSE, treated with recombinant mouse TNF- at the indicated concentrations, and further

incubated for 3 days. Flow-cytometry histograms show representative results. The

proliferation ratios were determined via measuring diluted fluorescence intensity of a

histogram in flow cytometry in which the numbers inside squares represent the percentages

of bracketed regions. Data are representative of at least three separate experiments.

Count

Supplemental Figure S6

398

674

10 pg/mL of IL-1

10 ng/mL of IL-1

FoxP3

Supplemental Figure S6. The CD4 T cells proliferated or skewed by IL-1 display a

property of regulatory T cells expressing FoxP3. The CD4 T cells stained with CFSE were

cultured with either 10 pg/mL or 10 ng/mL of IL-1 for 3 days and analyzed for FoxP3

expression in CFSE-diluted cells. Flow cytometry histogram shows change in expression of

FoxP3 in response to treatment with low (10 pg/mL, blue line) or high (10 ng/mL, red line)

doses of IL-1. The numbers inside square represent MFI for FoxP3 expression. MFI, mean

fluorescent intensity. Data are representative of at least three independent experiments.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る