リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Depletion of Foxp3+ regulatory T cells augments CD4+ T cell immune responses in atherosclerosis-prone hypercholesterolemic mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Depletion of Foxp3+ regulatory T cells augments CD4+ T cell immune responses in atherosclerosis-prone hypercholesterolemic mice

Kasahara, Kazuyuki Sasaki, Naoto Amin, Hilman Zulkifli Tanaka, Toru Horibe, Sayo Yamashita, Tomoya Hirata, Ken-ichi Rikitake, Yoshiyuki 神戸大学

2022.07.01

概要

Compelling evidence suggests a crucial role for Foxp3+ regulatory T cells (Tregs) in the control of atherosclerosis. Although suppression of pro-inflammatory CD4+ T cell immune responses is supposed to be important for athero-protective action of Foxp3+ Tregs, few studies have provided direct evidence for this protective mechanism. We investigated the impact of Foxp3+ Treg depletion on CD4+ T cell immune responses and the development of atherosclerosis under hypercholesterolemia. We employed DEREG (depletion of regulatory T cells) mice on an atherosclerosis-prone low-density lipoprotein receptor-deficient (Ldlr−/−) background, which carry a diphtheria toxin (DT) receptor under the control of the foxp3 gene locus. In these mice, DT injection led to efficient depletion of Foxp3+ Tregs in spleen, lymph nodes and aorta. Depletion of Foxp3+ Tregs augmented CD4+ effector T cell immune responses and aggravated atherosclerosis without affecting plasma lipid profile. Notably, the proportion of pro-inflammatory IFN-γ-producing T cells were increased in spleen and aorta following Foxp3+ Treg depletion, implying that Foxp3+ Tregs efficiently regulate systemic and aortic T cell-mediated inflammatory responses under hypercholesterolemia. Unexpectedly, Foxp3+ Treg depletion resulted in an increase in anti-inflammatory IL-10-producing T cells, which was not sufficient to suppress the augmented proinflammatory T cell immune responses caused by reduced numbers of Foxp3+ Tregs. Our data indicate that Foxp3+ Tregs suppress pro-inflammatory CD4+ T cell immune responses to control atherosclerosis under hypercholesterolemia.

この論文で使われている画像

参考文献

[1] G.A. Roth, G.A. Mensah, C.O. Johnson, G. Addolorato, E. Ammirati, L.M. Baddour, N.C. Barengo, A.Z. Beaton, E.J. Benjamin, C.P. Benziger, A. Bonny, M. Brauer, M. Brodmann, T.J. Cahill, J. Carapetis, A.L. Catapano, S.S. Chugh, L.T. Cooper, J. Coresh, M. Criqui, N. DeCleene, K.A. Eagle, S. Emmons-Bell, V.L. Feigin, J. Fernandez-Sola, G. Fowkes, E. Gakidou, S.M. Grundy, F.J. He, G. Howard, F. Hu, L. Inker, G. Karthikeyan, N. Kassebaum, W. Koroshetz, C. Lavie, D. Lloyd-Jones, H.S. Lu, A. Mirijello, A.M. Temesgen, A. Mokdad, A.E. Moran, P. Muntner, J. Narula, B. Neal, M. Ntsekhe, G. Moraes de Oliveira, C. Otto, M. Owolabi, M. Pratt, S. Rajagopalan, M. Reitsma, A.L.P. Ribeiro, N. Rigotti, A. Rodgers, C. Sable, S. Shakil, K. Sliwa-Hahnle, B. Stark, J. Sundstrom, P. Timpel, I.M. Tleyjeh, M. Valgimigli, T. Vos, P.K. Whelton, M. Yacoub, L. Zuhlke, C. Murray, V. Fuster, G.- N.-J.G.B.o.C.D.W. Group, Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study, J. Am. Coll. Cardiol. 76 (2020) 2982–3021.

[2] D. Wolf, K. Ley, Immunity and inflammation in atherosclerosis, Circ. Res. 124 (2019) 315–327.

[3] R. Saigusa, H. Winkels, K. Ley, T cell subsets and functions in atherosclerosis, Nat. Rev. Cardiol. 17 (2020) 387–401.

[4] Z. Mallat, A. Gojova, V. Brun, B. Esposito, N. Fournier, F. Cottrez, A. Tedgui, H. Groux, Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice, Circulation 108 (2003) 1232–1237.

[5] H. Ait-Oufella, B.L. Salomon, S. Potteaux, A.K. Robertson, P. Gourdy, J. Zoll, R. Merval, B. Esposito, J.L. Cohen, S. Fisson, R.A. Flavell, G.K. Hansson, D. Klatzmann, A. Tedgui, Z. Mallat, Natural regulatory T cells control the development of atherosclerosis in mice, Nat Med 12 (2006) 178–180.

[6] N. Sasaki, T. Yamashita, M. Takeda, M. Shinohara, K. Nakajima, H. Tawa, T. Usui, K. Hirata, Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice, Circulation 120 (2009) 1996–2005.

[7] R. Klingenberg, N. Gerdes, R.M. Badeau, A. Gistera, D. Strodthoff, D.F. Ketelhuth, A.M. Lundberg, M. Rudling, S.K. Nilsson, G. Olivecrona, S. Zoller, C. Lohmann, T.F. Luscher, M. Jauhiainen, T. Sparwasser, G.K. Hansson, Depletion of FOXP3þ regulatory T cells promotes hypercholesterolemia and atherosclerosis, J. Clin. Invest. 123 (2013) 1323–1334.

[8] J. Zhou, P.C. Dimayuga, X. Zhao, J. Yano, W.M. Lio, P. Trinidad, T. Honjo, B. Cercek, P.K. Shah, K.Y. Chyu, CD8(þ)CD25(þ) T cells reduce atherosclerosis in apoE(/) mice, Biochem. Biophys. Res. Commun. 443 (2014) 864–870.

[9] M. Wigren, H. Bjorkbacka, L. Andersson, I. Ljungcrantz, G.N. Fredrikson, M. Persson, C. Bryngelsson, B. Hedblad, J. Nilsson, Low levels of circulating CD4þ FoxP3þ T cells are associated with an increased risk for development of myocardial infarction but not for stroke, Arterioscler. Thromb. Vasc. Biol. 32 (2012) 2000–2004.

[10] T. Emoto, N. Sasaki, T. Yamashita, K. Kasahara, K. Yodoi, Y. Sasaki, T. Matsumoto, T. Mizoguchi, K. Hirata, Regulatory/effector T-cell ratio is reduced in coronary artery disease, Circ. J. 78 (2014) 2935–2941.

[11] S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, M. Toda, Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases, J. Immunol. 155 (1995) 1151–1164.

[12] S. Sakaguchi, T. Yamaguchi, T. Nomura, M. Ono, Regulatory T cells and immune tolerance, Cell 133 (2008) 775–787.

[13] T.N. Dinh, T.S. Kyaw, P. Kanellakis, K. To, P. Tipping, B.H. Toh, A. Bobik, A. Agrotis, Cytokine therapy with interleukin-2/anti-interleukin-2 monoclonal antibody complexes expands CD4þCD25þFoxp3þ regulatory T cells and attenuates development and progression of atherosclerosis, Circulation 126 (2012) 1256–1266.

[14] T. Kita, T. Yamashita, N. Sasaki, K. Kasahara, Y. Sasaki, K. Yodoi, M. Takeda, K. Nakajima, K. Hirata, Regression of atherosclerosis with anti-CD3 antibody via augmenting a regulatory T-cell response in mice, Cardiovasc. Res. 102 (2014) 107–117.

[15] N. Sasaki, T. Yamashita, K. Kasahara, A. Fukunaga, T. Yamaguchi, T. Emoto, K. Yodoi, T. Matsumoto, K. Nakajima, T. Kita, M. Takeda, T. Mizoguchi, T. Hayashi, Y. Sasaki, M. Hatakeyama, K. Taguchi, K. Washio, S. Sakaguchi, B. Malissen, C. Nishigori, K.I. Hirata, UVB exposure prevents atherosclerosis by regulating immunoinflammatory responses, Arterioscler. Thromb. Vasc. Biol. 37 (2017) 66–74.

[16] S. Ishibashi, M.S. Brown, J.L. Goldstein, R.D. Gerard, R.E. Hammer, J. Herz, Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery, J. Clin. Invest. 92 (1993) 883–893.

[17] K. Lahl, C. Loddenkemper, C. Drouin, J. Freyer, J. Arnason, G. Eberl, A. Hamann, H. Wagner, J. Huehn, T. Sparwasser, Selective depletion of Foxp3þ regulatory T cells induces a scurfy-like disease, J. Exp. Med. 204 (2007) 57–63.

[18] N. Gagliani, C.F. Magnani, S. Huber, M.E. Gianolini, M. Pala, P. Licona-Limon, B. Guo, D.R. Herbert, A. Bulfone, F. Trentini, C. Di Serio, R. Bacchetta, M. Andreani, L. Brockmann, S. Gregori, R.A. Flavell, M.G. Roncarolo, Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells, Nat Med 19 (2013) 739–746.

[19] T. Tanaka, N. Sasaki, Y. Rikitake, Recent advances on the role and therapeutic potential of regulatory T cells in atherosclerosis, J. Clin. Med. 10 (2021).

[20] J. Koreth, K. Matsuoka, H.T. Kim, S.M. McDonough, B. Bindra, E.P. Alyea 3rd, P. Armand, C. Cutler, V.T. Ho, N.S. Treister, D.C. Bienfang, S. Prasad, D. Tzachanis, R.M. Joyce, D.E. Avigan, J.H. Antin, J. Ritz, R.J. Soiffer, Interleukin-2 and regulatory T cells in graft-versus-host disease, N. Engl. J. Med. 365 (2011) 2055–2066.

[21] D. Saadoun, M. Rosenzwajg, F. Joly, A. Six, F. Carrat, V. Thibault, D. Sene, P. Cacoub, D. Klatzmann, Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis, N. Engl. J. Med. 365 (2011) 2067–2077.

[22] T.X. Zhao, M. Kostapanos, C. Griffiths, E.L. Arbon, A. Hubsch, F. Kaloyirou, J. Helmy, S.P. Hoole, J.H.F. Rudd, G. Wood, K. Burling, S. Bond, J. Cheriyan, Z. Mallat, Low-dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndromes (LILACS): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase I/II clinical trial, BMJ Open 8 (2018), e022452.

[23] P.M. Ridker, B.M. Everett, T. Thuren, J.G. MacFadyen, W.H. Chang, C. Ballantyne, F. Fonseca, J. Nicolau, W. Koenig, S.D. Anker, J.J.P. Kastelein, J.H. Cornel, P. Pais, D. Pella, J. Genest, R. Cifkova, A. Lorenzatti, T. Forster, Z. Kobalava, L. Vida-Simiti, M. Flather, H. Shimokawa, H. Ogawa, M. Dellborg, P.R.F. Rossi, R.P.T. Troquay, P. Libby, R.J. Glynn, C.T. Group, Antiinflammatory therapy with Canakinumab for atherosclerotic disease, N. Engl. J. Med. 377 (2017) 1119–1131.

[24] J.C. Tardif, S. Kouz, D.D. Waters, O.F. Bertrand, R. Diaz, A.P. Maggioni, F.J. Pinto, R. Ibrahim, H. Gamra, G.S. Kiwan, C. Berry, J. Lopez-Sendon, P. Ostadal, W. Koenig, D. Angoulvant, J.C. Gregoire, M.A. Lavoie, M.P. Dube, D. Rhainds, M. Provencher, L. Blondeau, A. Orfanos, P.L. L'Allier, M.C. Guertin, F. Roubille, Efficacy and safety of low-dose Colchicine after myocardial infarction, N. Engl. J. Med. 381 (2019) 2497–2505.

[25] S.M. Nidorf, A.T.L. Fiolet, A. Mosterd, J.W. Eikelboom, A. Schut, T.S.J. Opstal, S.H.K. The, X.F. Xu, M.A. Ireland, T. Lenderink, D. Latchem, P. Hoogslag, A. Jerzewski, P. Nierop, A. Whelan, R. Hendriks, H. Swart, J. Schaap, A.F.M. Kuijper, M.W.J. van Hessen, P. Saklani, I. Tan, A.G. Thompson, A. Morton, C. Judkins, W.A. Bax, M. Dirksen, M. Alings, G.J. Hankey, C.A. Budgeon, J.G.P. Tijssen, J.H. Cornel, P.L. Thompson, I. LoDoCo2 Trial, Colchicine in patients with chronic coronary disease, N. Engl. J. Med. 383 (2020) 1838–1847.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る