リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of analytical technique for in-situ determinations of trace elements using LA-ICP-MS and its application to metals in Acfer 094 chondrite」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of analytical technique for in-situ determinations of trace elements using LA-ICP-MS and its application to metals in Acfer 094 chondrite

槇納, 好岐 東京大学 DOI:10.15083/0002004739

2022.06.22

概要

Chondrites are one of the most primitive materials in the Solar System, and the cosmochemical features of the chondrites can provide various important clues to understand the diversity of the constituting materials through the evolution sequence of the Solar System and planets. Both the mineralogical, chemical and isotopic signature of the chondrites can vary significantly due to different physicochemical reactions, reflecting the evolution of the Solar System. Despite the obvious success in obtaining the genetic link between the origin of the chondrites and spatial distribution of elements within the Solar System, the elemental distribution in chondrites, that reflect the physicochemical conditions of the reaction, are not well understood. Thus, elucidation of the mechanism of variations of the elemental composition of the chondrites is still a key issue to understand the chemical evolution of the Solar System.

Metals in the chondritic materials are mainly composed of Fe-Ni metallic alloys and were ubiquitously present in almost all the chondrites. The Fe-Ni metals contain series of siderophile elements (iron-loving elements) in various concentration levels, that reflects the physicochemical conditions, such as formation temperature and oxygen fugacity, and thus, the cosmochemical features of metal grains can be used to decipher the chemical evolution of our Solar System.

To do this, we have developed a new analytical technique using the laser ablation-ICP-mass spectrometry (LA-ICP-MS technique) to derive reliable elemental data from the Fe-Ni metals presented in chondrites, aiming at to understand evolution sequence of the Solar System. LAICP-MS has been used for the in-situ trace elemental analysis, however, the practical use of the LA-ICP-MS technique for chondrites was retarded by both the lower elemental sensitivity and lower spatial resolution, and thus, further improvement of the elemental sensitivity and ability to measure siderophile elements from small sized metal grains were highly desired. To study the chemical fractionation of the early Solar System recorded in metals in chondrite, we improved the analytical technique including instrumental and methodological developments and applied the technique to the Acfer 094 chondrite.

In Chapter 1, we reviewed the background of (i) chemical fractionation in the early Solar System, (ii) chondrite and their chemical composition, (iii) trace elements in metal phase, and (iv) LA-ICP-MS.

In Chapter 2, new analytical technique to determine trace elements in metal grains of the chondrites based on the LA-ICP-MS was described.

In Section 2.1, new protocols for laser sampling using the very low fluence was developed (i.e., soft ablation protocol). With the soft ablation protocol, selective ablation of only metal grains can be made, abbreviating the risk of laser ablation of silicate phases, thus an elemental analysis of metal grains smaller than the laser spot size can be made.

In Section 2.2, a multiple spot laser ablation (msLA) using the high-repetition rate laser system was developed to improve the analytical sensitivity and the calibration technique. With the multiple spot laser ablation, laser-induced sample aerosols released from the inclusion can be integrated within the sampling cell, and the resulting mixture of the sample aerosols was then introduced into the ICP-MS within in short time period. The unique features achieved by the multiple spot ablation were described in this thesis.

In Chapter 3, newly developed analytical technique using the combination of soft ablation protocol and multiple spot ablation technique were demonstrated and applied for the elemental analysis from Fe-Ni metals in Acfer 094 chondrite. Based on the data obtained here, the fractionation process of trace elements in metal grains associated with ameboid olivine aggregates (AOAs), chondrule and matrix in Acfer 094 was discussed. The compositions of highly refractory elements (Re, Os, W, and Ir) in the Fe-Ni metals found in the AOAs showed complementary results to those found in Ca-Al-rich inclusions (CAIs). The measured complementarity of the refractory elements between AOAs and CAIs suggests that the AOAs were formed through condensation from the gas reservoir, which CAIs were already removed.

In Chapter 4, the summary of this thesis and the future prospects are described.

この論文で使われている画像

参考文献

Alexander, C. M., Grossman, J. N., Ebel, D. S. & Ciesla, F. J. The formation conditions of chondrules and chondrites. Science 320, 1617-1619 (2008).

Anders, E. & Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta 53, 197-214 (1989)

Arrowsmith, P. Laser ablation of solids for elemental analysis by inductively coupled plasma mass spectrometry. Analytical Chemistry 59, 1437-1444 (1987).

Bland, P. A., Alard, O., Benedix, G. K., Kaersley, A. T., Menzies, O. N., Watt, L. E., Rogers & N. W. Volatile fractionation in the early Solar System and chondrule/matrix complementarity. Proc Natl Acad Sci USA 102, 13755-13760 (2005).

Bouvier, A. & Wadhwa, M. The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geoscience 3, 637-641, (2010).

Brearly, A. J. & Jones, R. H., Chondritic meteorites, Planetary materials, 36, 3-001 - 3-398(1998)

Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C. & Metzler, K. Tungsten isotopic constraints on the age and origin of chondrules. Proc. Natl. Acad. Sci. U S A 113, 2886-2891 (2016)

Cameron, A. G. W. Abundances of the elements in the solar system, Space Science Reviews volume 15, 121–146(1973)

Campbell, A. J. & Humayun, M. Formation of metal in Grosvenor Mountains 95551 and comparison to ordinary chondrites. Geochimica et Cosmochimica Acta 67, 2481-2495 (2003).

Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F. & Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109-115 (1996).

Clayton, R. N. Oxygen isotopes in meteorites. AREPS 21, 115-149 (1993).

Connelly, J., Bizzarro, M., Krot, A. N., Nordlund, Å., Wielandt, D. & Ivanova, M. A. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651-655 (2012).

Davis, A. M. & Richter, F. M. Treatise on Geochemistry 2nd edition, Elsevier, 335-360 (2014).

Duckworth, H. E., Barber, R. C., & Venkatasubramanian, L. V. S., Mass Spectrometry, Cambridge University Press, London, 70–83 (1986).

Fegley, B. & Palme, H. Evidence for oxidizing conditions in the Solar nebula from Mo and W depletions in refractory inclusions in carbonaceous chondrites. Earth and Planetary Science Letters 72, 311-326 (1985). Newton, J., Franchi, I.A. & Pillinger, C.T. The oxygen-isotopic reford in enstatite chondrite. Meteoritics & Planetary Science 35, 689-698 (2000)

Gandie, J. & Tedesco, E. Compositional Structure of the Asteroid Belt. Science 216, 1405-1407 (1982).

Goldschmidt, V. M. The principles of distribution of chemical elements in minerals and rocks. J. Chem. Soc., 655-673 (1937).

Gray, A. L. Solid Sample Introduction by Laser Ablation for Inductively Coupled Plasma Source Mass Spectrometry. Analyst 110, 551-556 (1985).

Grossman, J. N. Condensation in the primitive Solar nebula. Geochimica et Cosmochimica Acta 36, 597-619 (1972).

Grossman, L. & Larimer, J. W. Early Chemical History of the Solar System, Rev. Geophys. Space Phys. 12, 71-101 (1974)

Guillong, M., Horn, I. & Günther, D. A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry 18, 1224-1230 (2003).

Gundlach-Graham, A., Garofalo, P. S., Schwarz, G., Redi, D. & Günther, D. High-resolution, Quantitative Element Imaging of an Upper Crust, Low-angle Cataclasite (Zuccale Fault, Northern Apennines) by Laser Ablation ICP Time-of-Flight Mass Spectrometry.

Geostandards and Geoanalytical Research 42, 559-574 (2018)

Günther, D. & Heinrich, C. A. Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium–argon mixtures as aerosol carrier. Journal of Analytical and Atomic Spectrometry 14, 1363-1368 (1999).

Günther, D. & Hattendorf, B. Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. Trends Anal. Chem. 24, 255-265 (2005).

Hashida, M., Semerok, A. F., Gobert, O., Petite, G. & Wagner, J. F. in Nonresonant Laser-Matter Interaction, NLMI-10 178-185 (2001).

Hayashi, C., Nakazawa, K., Nakagawa, Y. Formation of the solar system, Protostars and planets II, 1100-1153, Arizona Univ. Press (1985)

Hezel, D. C. & Palme, H. The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth and Planetary Science Letters 294, 85-93 (2010).

Hirata, T. & Nesbitt, R. W. U-Pb isotope geochronology of zircon: Evaluation of the laser probeinductively coupled plasma mass spectrometry technique. Geochimica et Cosmochimica Acta 59, 2491-2500 (1995).

Hirata, T. & Miyazaki, Z. High-Speed Camera Imaging for Laser Ablation Process: For FurtherReliable Elemental Analysis Using Inductively Coupled Plasma-Mass Spectrometry. Analytical Chemistry 79, 147-152 (2007)

Hollenbach, D., Yorke, H. W. & Johnstone, D. Disk dispersal round young stars. in Protostars and Planets IV (2000).

Horn, I. & Günther, D. The influence of ablation carrier gasses Ar, He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: implications for LA-ICP-MS. Applied Surface Science 207, 144-157 (2003).

Huang, S. & Jacobsen, S. B. Calcium isotopic compositions of chondrites. Geochimica et Cosmochimica Acta 201, 364-376 (2017).

Itoh, S. & Yurimoto, H. Contemporaneous formation of chondrules and refractory inclusions in the early Solar System. Nature 423, 728-731 (2003).

Jacquet, E., Paulhiac-Pison, M., Alard, O., Kearsley, A. T. & Gounelle, M. Trace element geochemistry of CR chondrite metal. Meteoritics & Planetary Science 48, 1981-1999(2013).

Kelly, W. R. & Larimer, J. W. Chemical fractionations in meteorites-VIII. Iron meteorites and the cosmochemical history of the metal phase. Geochimica et Cosmochimica Acta 41, 93-111 (1977).

Koch, J., Wälle, M., Pisonero, J. & Günther, D. Performance characteristics of ultra-violet femtosecond laser ablation inductively coupled plasma mass spectrometry at ∼265 and ∼200 nm. Journal of Analytical Atomic Spectrometry 21, 932-940 (2006).

Krot, A. N., Fegan, T. J., Keil, K., McKeegan, K. D., Sahipal, S., Hutcheon, I. D., Petaev, M. I. & Yurimoto, H. Ca,Al-rich inclusions, amoeboid olivine aggregates, and Al-rich chondrules from the unique carbonaceous chondrite Acfer 094: I. mineralogy and petrology. Geochimica et Cosmochimica Acta 68, 2167-2184 (2004).

Krot, A. N., Keil, K., Scott, E. R. D., Goodrich, C. A. & Weisberg, M. K. Treatise on Geochemistry 2nd edition, Elsevier, 1-63 (2014).

Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc Natl Acad Sci U S A 114, 6712-6716(2017).

Kuebler, K. E., McSween Jr., H. Y., Carson, W. D. & Hirsch, D. Sizes and Masses of Chondrules and Metal–Troilite Grains in Ordinary Chondrites: Possible Implications for Nebular Sorting. Icarus 141, 96-106 (1999).

Lodders K. Solar System abundances and condensation temperatures of the elements. The Astrophysical Journal 591, 1220-1247 (2003).

Lodders, K. & Fegley, B. Jr. Chemistry of the Solar System. RSC Publishing, (2011). MacPherson, G. J. Treatise on Geochemistry 2nd edition, Elsevier 139-179 (2014).

Miyasaka, Y., Hashida, M., Nishii, T., Inoue, S. & Sakabe, S. Derivation of effective penetration depth of femtosecond laser pulses in metal from ablation rate dependence on laser fluence, incidence angle, and polarization. Applied Physics Letters 106, 013101 (2015)

Okabayashi, S., Yokoyama, T., Nakanishi, N. & Iwamori, H. Fractionation of highly siderophile elements in metal grains from unequilibrated ordinary chondrites: Implications for the origin of chondritic metals. Geochimica et Cosmochimica Acta 244, 197-215 (2019)

Palme, H. Platinum-Group Elements in Cosmochemistry. Elements 4, 233-238 (2008).

Palme, H., Hezel, D. C. & Ebel, D. S. The origin of chondrules: Constraints from matrix composition and matrix-chondrule complementarity. Earth and Planetary Science Letters 411, 11-19 (2015).

Palme, H., Lodders, K. & Jones, A. Treatise on Geochemistry 2nd edition, Elsevier, 15-36 (2014). Rambaldi, E. Relict grains in chondrules. Nature 293, 558-561 (1981).

Pisonero, J., Fernández, B. & Günther, D. Critical revision of GD-MS, LA-ICP-MS and SIMS as inorganic mass spectrometric techniques for direct solid analysis. Journal of Analytical Atomic Spectrometry 24, 1145-1160 (2009).

Poole, G. M., Rehkämper, M., Coles, B. J., Goldberg, T. & Smith, C. L. Nucleosynthetic molybdenum isotope anomalies in iron meteorites – new evidence for thermal processing of Solar nebula material. Earth and Planetary Science Letters 473, 215-226 (2017).

Rubin, A. E., Kallemeyn, G. W., Wasson, J. T., Clayton, R. N., Mayeda, T. K., Grady, M., Verchovsky, A. B., Eugster, O. & Lorenzetti, S. Formation of metal and silicate globules in Gujba: a new Bencubbin-like meteorite fall. Geochimica et Cosmochimica Acta 67, 3283-3298 (2003)

Russell, S. S., Connolly Jr, H. C. & Krot, A. N. Chondrules Records of Protoplanetary Disk Processes, Cambridge University Press (2018).

Russo, R. E., Mao, X., Gonzalez, J. J. & Mao, S. S. Femtosecond laser ablation ICP-MS. Journal of Analytical and Atomic Spectrometry 17, 1072-1075 (2002).

Scott, E. R. D. & Krot, A. N. Treatise on Geochemistry 2nd edition, Elsevier, 65-137 (2014).

Sylvester, P. J. & Jackson, S. E. A Brief History of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Elements 12, 307-310 (2016).

Tunheng, A. & Hirata, T. Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry. Journal of Analytical Atomic Spectrometry 19 (2004).

Taylor, S. R. Solar System Evolution A New Perspective 2nd edition, Cambridge Univ. Press (2001)

Trinquier, A., Elliott, T., Ulfbeck, D., Coath, C., Krot, A. N. & Bizzarro, M. Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk. Science 324, 374-376 (2009).

Urey, H. C. & Craig, H. The composition of the stone meteorites and the origin of meteorites. Geochimica et Cosmochimica Acta 4, 36-82 (1953).

van Kooten, E., Moynier, F. & Agranier, A. A unifying model for the accretion of chondrules and matrix. Proc Natl Acad Sci U S A 116, 18860-18866 (2019).

Walker, R. J. Siderophile Elements in Tracing Planetary Formation and Evolution. Geochemical Perspective 5, 1-145 (2016).

Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters 311, 93-100 (2011).

Wasson, J. T. The chemical classification of iron meteorites: I. A study of iron meteorites with low concentrations of gallium and germanium. Geochimica et Cosmochimica Acta 31, 161-180 (1967)

Wasson, John T. Meteorites : their record of early solar-system history, New York: Freeman. (1985)

White, W. M., Geochemistry, Wiley-Blackwell (2013) Wieser, M. E. & Schwieters, J. B. The development of multiple collector mass spectrometry for isotope ratio measurements. Int. J. Mass spectrom. 242, 97-115 (2005).

Wilson, R. G. SIMS quantification in Si, GaAs, and diamond an update. Int. J. Mass spectrom. 143, 43-49 (1995).

Wood, J. A. Chondritic meteorites and the solar nebula. Ann. Rev. Earth Planet. Sci. 16, 53-72(1988).

Yurimoto, H., Kuramoto, K., Krot, A. N., Scott, E. R. D., Cuzzi, J. N., Thiemens, M. H. & Lyons, J. R. Origin and evolution of oxygen-isotopic composition of the Solar System., Protostars and Planets V 849-862 (2007).

Chapter2

Bonse, J., Sturm, H., Schmidt, D. & Kautek, W. Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air. Applied Physics A Materials Science & Processing 71, 657-665 (2000).

Bühn, B., Pimentel, M. M., Matteini, M. & Dantas, E. L. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma mass spectrometry. Anais da Academia Brasileira de Ciências 81, 99-114 (2009)

Campbell, A. J. & Humayun, M. Trace element microanalysis in iron meteorites by laser ablation ICPMS. Analytical Chemistry 71, 939-946 (1999).

Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F. & Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109-115 (1996).

Diwakar, P. K., Gonzalez, J. J., Harilal, S. S., Russo, R. E. & Hassanein, A. Ultrafast laser ablation ICP-MS: role of spot size, laser fluence, and repetition rate in signal intensity and elemental fractionation. J. Anal. At. Spectrom. 29, 339-346 (2014)

Douglas, D. J. & French, J. B. Collisional Focusing Effects in Radio Frequency Quadrupoles. J. Am. Soc. Mass Spectrom. 3, 398-408 (1992).

Fernández, B., Claverie, F., Pécheyran, C., Donard, O. F. X. & Claverie, F. Direct analysis of solid samples by fs-LA-ICP-MS. TrAC, Trends Anal. Chem. 26, 951-966 (2007).

Fernandez, B., Claverie, F., Pecheyran, C., Alexis, J. & Donard, O. F. Direct determination of trace elements in powdered samples by in-cell isotope dilution femtosecond laser ablation ICPMS. Anal. Chem. 80, 6981-6994 (2008)

Gallais, L. & Commandre, M. Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs. Appl. Opt. 53, A186-196, (2014).

Gao, S., Liu, X., Yuan, H., Hattendorf, B., Günther, D., Chen L. & Hu, S. Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser AblationInductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research 26, 181-196 (2007).

Guillong, M. & Günther, D. Effect of particle size distribution on ICP-induced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry. Journal of Analytical Atomic Spectrometry 17, 831-837, (2002).

Guillong, M., Horn, I. & Günther, D. A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry 18, 1224-1230 (2003).

Gundlach-Graham, A., Garofalo, P. S., Schwarz, G., Redi, D. & Günther, D. High-resolution, Quantitative Element Imaging of an Upper Crust, Low-angle Cataclasite (Zuccale Fault, Northern Apennines) by Laser Ablation ICP Time-of-Flight Mass Spectrometry.

Geostan dards and Geoanalytical Research 42, 559-574 (2018).

Hashida, M., Semerok, A. F., Gobert, O., Petite, G. & Wagner, J. F. Ablation thresholds of metals with femtosecond laser pulses, Nonresonant Laser-Matter Interaction (NLMI-10) 178-185 (2001)

Hirata, T. Soft Ablation Technique for Laser Ablation– Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical and Atomic Spectrometry 12, 1337-1342 (1997)

Hirata, T. & Ohno, T. In-situ isotopic ratio analysis of iron using laser ablation-multiple collectorinductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Journal of Analytical Atomic Spectrometry 16, 487-491, (2001).

Horn, I., Guillong, M. & Günther. Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles - implications for LA-ICP-MS. Applied Surface Science 182, 91-102 (2001).

Jacquet, E., Paulhiac-Pison, M., Alard, O., Kearsley, A. T. & Gounelle, M. Trace element geochemistry of CR chondrite metal. Meteoritics & Planetary Science 48, 1981-1999, (2013).

Koch, J., von Bohlen, A., Hergenröder, R. & Niemax, K. Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass. Journal of Analytical Atomic Spectrometry 19, 267-272 (2004).

Koch, J., Wälle, M., Pisonero, J. & Günther, D. Performance characteristics of ultra-violet femtosecond laser ablation inductively coupled plasma mass spectrometry at ∼265 and ∼200 nm. Journal of Analytical Atomic Spectrometry 21, 932-940 (2006).

Kroslakova, I. & Günther, D. Elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry: evidence for mass load induced matrix effects in the ICP during ablation of a silicate glass. Journal of Analytical Atomic Spectrometry 22, 51-62 (2007).

Kuebler, K. E., McSween Jr., H. Y., Carson, W. D. & Hirsch, D. Sizes and Masses of Chondrules and Metal–Troilite Grains in Ordinary Chondrites: Possible Implications for Nebular Sorting. Icarus 141, 96-106 (1999).

Kuhn, H.-R. & Günther, D. Laser ablation-ICP-MS: particle size dependent elemental composition studies on filter-collected and online measured aerosols from glass. Journal of Analytical Atomic Spectrometry 19, 1158-1164 (2004).

LaHaye, N. L., Harilal, S. S., Diwakar, P. K. & Hassanein, A. The effect of laser pulse duration on ICP-MS signal intensity, elemental fractionation, and detection limits in fs-LA-ICPMS. Journal of Analytical Atomic Spectrometry 28, 1781-1787 (2013)

Li, Z., Hu, Z., Liu, Y., Gao, S., Li, M., Zong, K., Chen, H. & Hu, S. Accurate determination of elements in silicate glass by nanosecond and femtosecond laser ablation ICP-MS at high spatial resolution. Chemical Geology 400, 11-23 (2015)

Liu, C., Mao, X. L., Mao, S. S., Zeng, X., Greif, R. Russo, R. E. Nanosecond and femtosecond laser ablation of brass: particulate and ICP-MS measurements. Analytical Chemistry 76, 379-383 (2004).

Liu, Y., Hu, Z., Li, M. & Gao, S. Applications of LA-ICP-MS in the elemental analyses of geological samples. Chinese Science Bulletin 58, 3863-3878 (2013).

Martin, S., Hertwig, A., Lenzner, M., Krüger, J. & Kautek, W. Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses. Appl. Phys. A 77, 883-884 (2003).

Nakanishi, N., Yokoyama, T., Okabayashi, S., Usui, T. & Iwamori, H. Re-Os isotope systematics and fractionation of siderophile elements in metal phases from CBa chondrites. Meteoritics & Planetary Science 53, 1051-1065 (2018).

Okabayashi, S., Yokoyama, T., Nakanishi, N. & Iwamori, H. Fractionation of highly siderophile elements in metal grains from unequilibrated ordinary chondrites: Implications for the origin of chondritic metals. Geochimica et Cosmochimica Acta 244, 197-215 (2019).

Okazaki, K. & Kawashima, I. Estimation of the Japanese standard sample of iron and steel for instrumental analysis by photoelectric emission spectrochemical analysis. Tetsu-toHagane 58, 533-548 (1972).

Pisonero, J., Fernández, B. & Günther, D. Critical revision of GD-MS, LA-ICP-MS and SIMS as inorganic mass spectrometric techniques for direct solid analysis. Journal of Analytical Atomic Spectrometry 24, 1145-1160 (2009).

Raciukaitis, G., Brikas, M., Gecys, P. & Gedvilas, M. Accumulation effects in laser ablation of metals with high-repetition-rate lasers, Proc. SPIE 7005, in High-Power Laser Ablation VII, 70052L (2008)

Russo, R. E., Mao, X., Gonzalez, J. J. & Mao, S. S. Femtosecond laser ablation ICP-MS. Journal of Analytical and Atomic Spectrometry 17, 1072-1075, (2002).

Sylvester, P. J. & Jackson, S. E. A Brief History of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Elements 12, 307-310, (2016).

Tunheng, A. & Hirata, T. Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry. Journal of Analytical Atomic Spectrometry 19 (2004).

Ubide, T., McKenna, C. A., Chew, D. M. & Kamber, B. S. High-resolution LA-ICP-MS trace element mapping of igneous minerals: In search of magma histories. Chemical Geology, 157-168 (2015)

Wang, X. Y., Riffe, D. M., Lee, Y. & Downer, M. C. Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission. Phys Rev B Condens Matter 50, 8016-8019 (1994).

Yokoyama, T. D., Suzuki, T., Kon, Y. & Hirata, T. Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry. Anal. Chem. 83, 8892-8899 (2011).

Žemaitis, A., Gaidys, M., Brikas, M, Gečys, P., Račiukaitis, G. & Mindaugas GedvilasAdvanced laser scanning for highly-efficient ablation and ultrafast surface structuring: experiment and model. Sci. Rep. 8, 17376 (2018)

Chapter3

Albàrede, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227-1233 (2009).

Amelin, Y., Krot, A. N., Hutcheon, I. D. & Ulyanov, A. A. Lead Isotopic Ages of Chondrules and Calcium-Aluminum–Rich Inclusions. Science 297, 1678-1683 (2002).

Amelin, Y., Kaltenbach, A., Iizuka, Tsuyoshi, Stirling, C. H., Ireland, T. R., Petaev, M. & Jacobsen., S. B. U–Pb chronology of the Solar System's oldest solids with variable 238U/235U. Earth and Planetary Science Letters 300, 343-350, (2010).

Bouvier, A. & Wadhwa, M. The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geoscience 3, 637-641, (2010).

Campbell, A. J., Simon, S. B., Humayun, M. & Grossman, L. Chemical evolution of metal in refractory inclusions in CV3 chondrites. Geochimica et Cosmochimica Acta 67, 3119- 3134 (2003).

Campbell, A. J. & Humayun, M. Compositions of group IVB iron meteorites and their parent melt. Geochimica et Cosmochimica Acta 69, 4733-4744, (2005a).

Campbell A. J., Humayun M. & Weisberg M. K. Compositions of unzoned and zoned metal in the CBb chondrites Hammadah al Hamra 237 and Queen Alexandra Range 94627. Meteoritics & Planetary Science 40, 1131–1148, (2005b) .

Cassen, P. Models for the fractionation of moderately volatile elements in the solar nebula. Meteoritics & Planetary Science 31, 793-806 (1996).

Connelly, J. N., Bollard, J. & Bizzarro, M. Pb–Pb chronometry and the early Solar System. Geochimica et Cosmochimica Acta 201, 345-363 (2017).

Daly, L., Bland, P. A, Dyl, K. A., Forman, L. V., Evans, K. A., Trimby, P. W., Moody, S., Yang L., Liu, H., Ringer, S. P., Ryan, C. G. & Saunders, M. In situ analysis of Refractory Metal Nuggets in carbonaceous chondrites. Geochimica et Cosmochimica Acta 216, 61-81 (2017).

Desch, S. J., Morris, M. A., Connolly, H. C. & Boss, A. P. The importance of experiments: Constraints on chondrule formation models. Meteoritics & Planetary Science 47, 1139-1156 (2012).

Fegley, B. & Palme, H. Evidence for oxidizing conditions in the solar nebula from Mo and W depletions in refractory inclusions in carbonaceous chondrites. Earth and Planetary Science Letters 72, 311-326 (1985).

Grossman, J. N. Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta 36, 597-619 (1972).

Grossman, J. N. & Brearley, A. J. The onset of metamorphism in ordinary and carbonaceous chondrites. Meteoritics & Planetary Science 40, 87-122 (2005).

Hans, U., Kleine, T. & Bourdon, B. Rb–Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited. Earth and Planetary Science Letters 374, 204-214 (2013).

Hewins, R. H. & Radomsky, P. M. Temperature condition for chondrule formation. Meteoritics 25, 309-318 (1990).

Hewins, R. H., Yu, Y., Zanda, B. & Bourot-Denise, M. Do nebular fractionations, evaporative losses, or both, influence chondrule compositions. Antarct. Meteorite Res. 10, 275-298(1997).

Hewins, R. H., Connolly Jr, H. C., Lofgren, G. E. & Libourel, G. Experimental constraints on chondrule formation. Chondrites and the Protoplanetary Disk ASP Conference Series 341, 286-316 (2005).

Jacquet, E., Paulhiac-Pison, M., Alard, O., Kearsley, A. T. & Gounelle, M. Trace element geochemistry of CR chondrite metal. Meteoritics & Planetary Science 48, 1981-1999 (2013).

Katharina, L. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal 591, 1220-1247 (2003).

Kimura, M., Grossman, J. N. & Weisberg, M. K. Fe-Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites. Meteoritics & Planetary Science 43, 1161-1177 (2008).

Krot, A. N., Meibom, A., Petaev, M. I., Keil, K., Zolensky, M. E., Saito, A., Mukai, M. & Ohsumi,

K. Ferrous silicate spherules with euhedral iron-nickel metal grains from CH carbonaceous chondrites: Evidence for supercooling and condensation under oxidizing conditions. Meteoritics & Planetary Science 35, 1249-1258 (2000)

Krot, A. N., Fegan, T. J., Keil, K., McKeegan, K. D., Sahipal, S., Hutcheon, I. D., Petaev, M. I. & Yurimoto, H. Ca,Al-rich inclusions, amoeboid olivine aggregates, and Al-rich chondrules from the unique carbonaceous chondrite Acfer 094: I. mineralogy and petrology. Geochimica et Cosmochimica Acta 68, 2167-2184 (2004).

Krot, A. N., Amelin, Y., Bland, P., Ciesla, F. J., Connelly, J., Davis, A. M., Huss, G. R., Hutcheon, I. D., Makide, K., Nagashima, K., Nyquist, L. E., Russel, S. S., Scott, E. R. D., Thrane,

K., Yurimoto, H. & Yin, Q. Z. Origin and chronology of chondritic components: A review. Geochimica et Cosmochimica Acta 73, 4963-4997, (2009).

Krot, A. N., Keil, K., Scott, E. R. D., Goodrich, C. A. & Weisberg, M. K. Treatise on Geochemistry 2nd edition, Elsevier, 1-63 (2014).

Lodders, K. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal 591, 1220-1247 (2003).

Lyons, J. R. & Young, E. D. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435, 317-320 (2005).

MacKeegan, K. D., Chaussidon, M. & Robert, F. Incorporation of short-lived 10Be in a calciumalminum-rich inclusion from the Allende meteorite. Science 289, 1334-1337 (2000).

MacPherson, G. J. Treatise on Geochemistry 2nd edition, Elsevier, 139-179 (2014).

McNally, C. P., Hubbard, A., Mac Low, M.-M., Ebel, D. S. & D'Alessio, P. Mineral Processing by Short Circuits in Protoplanetary Disks. The Astrophysical Journal 767, L2(2013).

Meibom, A., Petaev, M. I., Krot, A. N., Wood, J. A. & Keil, K. Primitive FeNi metal grains in CH carbonaceous chondrites formed by condensation from a gas of solar composition. Journal of Geophysical Research: Planets 104, 22053-22059 (1999).

Morris, M. A., Boley, A. C., Desch, S. J. & Athanassiadou, T. Chondrule Formation in Bow Shocks around Eccentric Planetary Embryos. The Astrophysical Journal 752, 27 (2012).

Nakanishi, N., Yokoyama, T., Okabayashi, S., Usui, T. & Iwamori, H. Re-Os isotope systematics and fractionation of siderophile elements in metal phases from CBa chondrites.

Meteoritics & Planetary Science 53, 1051-1065 (2018).

Okabayashi, S., Yokoyama, T., Nakanishi, N. & Iwamori, H. Fractionation of highly siderophile elements in metal grains from unequilibrated ordinary chondrites: Implications for the origin of chondritic metals. Geochimica et Cosmochimica Acta 244, 197-215 (2019).

Palme, H. & Wlotzka, F. A metal particle from a Ca, Al-rich inclusion from the meteorite allende, and the condensation of refractory siderophile elements. Earth and Planetary Science Letters 33, 45-60 (1976).

Reed, T. B. Free Energy of Formation of binary compounds. MIT Press (1971)

Reisener, R., Meibom, A., Krot, A. N., Goldstein, J. I. & Keil, K. Microstructure of Condensate Fe-Ni Metal Particles in the CH Chondrite PAT91546. LPSC abstract (2000).

Ruzicka, A., Floss, C. & Hutson, M. Amoeboid olivine aggregates (AOAs) in the Efremovka, Leoville and Vigarano (CV3) chondrites: A record of condensate evolution in the solar nebula. Geochimica et Cosmochimica Acta 79, 79-105 (2012).

Sakamoto, N., Seto, Y., Itoh, S., Kuramoto, K., Fujino., K., Nagashima, K., Krot, A. N. & Yurimoto, H. Remnants of the Early Solar System Water Enriched in Heavy Oxygen Isotopes. Science 317, 231-233 (2007).

Scott, E. R. D. & Krot, A. N. Treatise on Geochemistry 2nd edition, Elsevier, 65-137 (2014).

Sears, D. W. G., Huang, S. & Benoit, P. H. Open-system behaviour during chondrule formation. Chondrules and the Protoplanetary Disk 24, 221-231 (1996)

Shu, F. H., Shang, H. & Lee, T. TowardanAstrophysicalTheory of Chondrites. Science 271, 1545-1552 (1996).

Stuve, J. M. & Ferrante, M. J. Thermodynamic properties of rhenium oxides, 8 to 1,400 K, Department of the Interior, Bureau of Mines (1976)

Tachibana, S. & Huss, G. R. Sulfur isotope composition of putative primary troilite in chondrules from Bishunpur and Semarkona. Geochimica et Cosmochimica Acta 69, 3075-3097(2005).

Thiemens, M. H. & Heidenreich, J. E. The Mass-Independent Fractionation of Oxygen: A Novel Isotope Effect and Its Possible Cosmochemical Implications. Science 219, 1073-1075(1983).

Tsuchiya, H., Shigeyoshi, R., Kawabata, T., Nakano, T., Uesugi, K. & Shirono, S. Threedimentional structures of chondrules and theire high-speed rotation. LPSC abstract (2003).

Uesugi, M. Kinetic stability of a melted iron globule during chondrule formation. I. Non-rotating model. Meteoritics & Planetary Science 43, 717-730 (2008)

Van Kooten, E. M., Wielandt, D., Schiller, M., Nagashima, K., Thomen, A., Larsen, K. K., Olsen, M. B., Nord, Å., Krot, A. N. & Bizzarro, M. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proc. Natl. Acad. Sci. U S A 113, 2011-2016 (2016).

Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters 311, 93-100 (2011).

Wasson, J. T. & Kallemeyn, G. W. Compositions of Chondrites. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 325, 535-544 (1988).

Weyrauch, M., Zipfel, J. & Weyer, S. Origin of metal from CB chondrites in an impact plume – A combined study of Fe and Ni isotope composition and trace element abundances. Geochimica et Cosmochimica Acta 246, 123-137 (2019).

Young, E. D., Kuramoto, K., Marcus, R. A., Yurimoto, H. & Jacobsen, S. B. Mass-independent Oxygen Isotope Variation in the Solar Nebula. Reviews in Mineralogy and Geochemistry 68, 187-218 (2008).

Yurimoto, H., Krot, A. N., Choi, B. G., Aléon, J., Kunihiro, T. & Brearley, A. J. Oxygen Isotopes of Chondritic Components. Reviews in Mineralogy and Geochemistry 68, 141-186 (2008).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る