リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Monazite as a tracer of crustal evolution」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Monazite as a tracer of crustal evolution

板野, 敬太 東京大学 DOI:10.15083/0002001941

2021.10.04

概要

Orogeny has played an important role in the evolution of continental crust. Orogeny is divided into two types (Dewey and Bird, 1970; Matsuda and Uyeda, 1971): Pacific and collisional types. Pacific type orogeny, associated with the subduction of oceanic plate, is vital for the formation of juvenile continental crust. In contrast, collision type orogeny, causing buoyant continental collision, is significant for the reworking of continental crust. Constraints on the nature and timing of orogeny are essential for a better understanding of crustal evolution over the Earth’s history.

Monazite, a light rare earth element (REE) phosphate, has a potential to be a powerful tracer for crustal processes. Monazite has been used as a geochronometer, geochemical tracer, and Nd isotopic tracer. The wide occurrence of monazite enables its various applications to the petrogenesis of granitic and metamorphic rocks. Monazite is also suited as a detrital high-resolution archive of orogenic events. The objective of this study is to advance our understanding of monazite geochemistry in order to use monazite as a tracer of crustal evolution.

It has been demonstrated that detrital monazite potentially provides more detailed insights in various scale orogenic events as compared to detrital zircon (Hietpas et al., 2010). Unfortunately, the various origins of monazite bring the difficulty in an interpretation of detrital monazite age peak. This difficulty can be overcome by linking geochemical fingerprints of monazite and its source rock types. Trace element composition is the key to understand the linkage due to its high dependence on co-existing minerals via element partitioning. However, there are two obstacles in monazite trace element geochemistry: (i) analytical problem in REE determination by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) and (ii) shortage of trace element data especially for igneous monazite. To overcome these obstacles, I attempted to develop a method of accurate REE analysis. Furthermore, trace element systematics of igneous monazite has been studied by the comprehensive analyses of monazites from various granitic rocks. The synthesis of reliable datasets of monazite chemical compositions demonstrates the utility of monazite REE-Th-U systematics as an indicator of source rock type. The improved analytical method and geochemical provenance indicator were applied to detrital monazites from major African rivers to obtain the constraints on the timing and nature of Pan-African orogenic events.

Accurate REE determination of monazite by LA-ICP-MS can be inhibited by oxide interferences. Yet, the oxide production mechanism has been poorly understood. Here I determined the oxide production rates (MO+/M+ ratios) of 15 REEs, Th, and U using synthetic and natural phosphates. I found two contrasting oxide production behaviors against the Ar sample gas flow rate, depending on the MO+ dissociation energy (D0(MO+)): the MO+/M+ ratios of elements with D0(MO+) ≥ 7 eV increased with the gas flow rates from 0.85 to 1.00 L min−1 , whereas those with D0(MO+) < 7 eV were nearly constant. Moreover, while there is a generally positive relationship between log(MO+/M+) and D0(MO+) among all elements, only the former showed a linear correlation whose slope increased with the gas flow rate. These results indicate that oxide production is a combined result of the following two processes: (i) the equilibrium reaction of MO+ ↔ M+ + O within the plasma and (ii) the bonding of M+ and O through collisions followed by radiative transition in the interface region. Oxide production through the first process was significant relative to the second process only when the elements had D0(MO+) ≥7 eV and the gas flow rate was high enough to decrease the plasma temperature to ∼ 8000 K. We further demonstrate the significance of middle-REE oxide interference on heavy-REEs during the analyses of monazites from pegmatites and garnet-bearing metamorphic rocks, which should be corrected using the determined oxide production rates.

Trace element systematics of igneous monazite has not been well understood so far. I conducted trace element and Nd isotope analyses of monazite in granitic rocks from the Busetsu pluton of the Japan arc to investigate the change of monazite geochemical signatures with granitic magma evolution. Furthermore, by integrating of monazite Nd-isotope and plagioclase Sr-isotope microanalyses, I revisited the magma sources, which were inferred from conventional whole-rock chemistry. The studied monazite grains show variations in the degree of negative Eu anomaly, Ce/Gd, and Th/U ratios. These variations correlate with each other, which can be accounted for by the fractionation of plagioclase and monazite considering the strong partitioning of Eu to plagioclase and of light-REE and Th to monazite, respectively. In the context of Rayleigh fractionation model, the degrees of plagioclase and monazite fractionation were quantitatively evaluated and found to be compatible with the geologic and petrologic observations. The isotopic data revealed significant variations in monazite 143Nd/144Nd ratio and plagioclase 87Sr/86Sr ratios, which are obviously larger than those of whole-rock samples. This finding reflects that the multiple sources were involved in the generation of the granitic magma. It is demonstrated that an integration of geochemical and isotope microanalyses of monazite enables tracking open system magmatic processes.

To link monazite composition with igneous petrogenesis and differentiation, we carried out comprehensive LA-ICP-MS measurements of REE-Th-U abundances in monazites from magnetite-series and ilmenite-series granitic rocks across the Japan arc. The data revealed systematic differences in monazite composition between magnetite-series and ilmenite-series samples, and between pegmatites and granites. In ilmenite-series granitic rocks, monazites from pegmatites showed larger negative Eu anomalies, lower light-REE/middle-REE ratios, and higher middle-REE/heavy-REE ratios than those from granites. These geochemical variations were attributed to significant fractional crystallization of feldspars, monazite, xenotime, and garnet during differentiation in relatively reduced peraluminous granitic magmas. In contrast, there was no remarkable difference in the REE fractionation pattern between magnetite-series pegmatites and granites. Furthermore, the magnitudes of the negative Eu anomalies in the magnetite-series monazites were smaller than those observed in the ilmenite-series samples. These features were interpreted to reflect the suppression of monazite, xenotime, and garnet fractionation and limited Eu incorporation into fractionating feldspars in relatively oxidized and non-peraluminous magmas. A comparison of the present data with previously reported data indicates that igneous monazites from granitic rocks are distinct from metamorphic monazites in REE composition, especially due to their larger negative Eu anomalies. Metamorphic monazites are further grouped into garnet-rich metamorphic with high middle-REE/heavy-REE and garnet-poor metamorphic origin with the low ratio. This finding highlights the potential utility of monazite REE-Th-U systematics as a provenance indicator for detrital monazites.

The geochemical indicator for source rock type was applied to detrital monazite from large rivers in Africa. We carried out U–Pb dating and geochemical analyses of approximately 500 detrital monazites from the Nile, Niger, Congo, Zambezi and Orange Rivers. The U–Pb dating defined age peaks at ∼600 Ma for the Nile, ∼580 Ma for the Niger, ∼630, ∼610 and ∼550 Ma for the Congo, ∼ 500 Ma for the Zambezi and 1200–1000 Ma for the Orange. All but the Orange age peaks correspond to the period of the Pan-African Orogeny. In the Niger, Congo and Zambezi, the Pan-African age peaks are 20–40 Myr younger than those defined by the detrital zircons from the same rivers. Based on the geochemical provenance indicator, the transition between igneous, garnet-rich, and garnet-poor metamorphic events were described in the age spectra of detrital monazite. The interpreted age peaks, together with the discrepancy between the detrital monazite and zircon ages, suggest that the Pan-African monazite age peaks essentially reflect the timing of syn- to post-collisional metamorphic events in the source terranes, whereas the detrital zircons ages provide a more representative record of magmatic events. The results imply that the Pan-African Orogeny was promoted by pre- to syn-collisional felsic magmatism during the early stages and, 20–40 Myr later, it was dominated by syn- and/or post-collisional metamorphism.

この論文で使われている画像

参考文献

Abdelsalam, M. G., Liégeois, J. P., & Stern, R. J. (2002). The Saharan Metacraton. Journal of African Earth Sciences, 34, 119–136.

Ackermann, R. J. (1976). The thermodynamics of ionization of gaseous oxides; the first ionization potentials of the lanthanide metals and monoxides. The Journal of Chemical Physics, 65(3), 1027. https://doi.org/10.1063/1.433179

Adachi, Y., & Wallis, S. (2008). Ductile deformation and development of andalusite microstructures in the Hongusan area: Constraints on the metamorphism and tectonics of the Ryoke Belt. Island

Arc, 17(1), 41–56. https://doi.org/10.1111/j.1440-1738.2007.00603.x Agbossoumondé, Y., Ménot, R.-P., Paquette, J. L., Guillot, S., Yéssoufou, S., & Perrache, C. (2007). Petrological and geochronological constraints on the origin of the Palimé–Amlamé granitoids (South Togo, West Africa): A segment of the West African Craton Paleoproterozoic margin reactivated during the Pan-African collision. Gondwana Research, 12(4), 476–488. https://doi.org/10.1016/j.gr.2007.01.004

Aleinikoff, J. N., Schenck, W. S., Plank, M. O., Srogi, L., Fanning, C. M., Kamo, S. L., & Bosbyshell, H. (2006). Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geological Society of America Bulletin, 118(1–2), 39–64. https://doi.org/10.1130/B25659.1

Aleinikoff, J. N., Schenck, W. S., Plank, M. O., Srogi, L., Fanning, C. M., Kamo, S. L., & Bosbyshell, H. (2006). Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. GSA Bulletin, 118(1–2), 39–64. Retrieved from http://dx.doi.org/10.1130/B25659.1

Annen, C., Blundy, J. D., & Sparks, R. S. J. (2006). The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology, 47(3), 505–539. Retrieved from http://dx.doi.org/10.1093/petrology/egi084

Antunes, I. M. H. R., Neiva, A. M. R., Silva, M. M. V. G., & Corfu, F. (2008). Geochemistry of S-type granitic rocks from the reversely zoned Castelo Branco pluton (central Portugal). Lithos, 103(3–4), 445–465. https://doi.org/10.1016/J.LITHOS.2007.10.003

Appel, P., Schenk, V., & Schumann, A. (2005). P-T path and metamorphic ages of pelitic schists at Murchison Falls, NW Uganda: Evidence for a Pan-African tectonometamorphic event in the Congo Craton. European Journal of Mineralogy, 17(5), 655–664. https://doi.org/10.1127/0935-1221/2005/0017-0655

Aries, S., Valladon, M., Polvé, M., & Dupré, B. (2000). A routine method for oxide and hydroxide interference corrections in ICP-MS chemical analysis of environmental and geological samples. Geostandards Newsletter, 24(1), 19–31. https://doi.org/10.1111/j.1751-908X.2000.tb00583.x

Arndt, N. T. (2013). The Formation and Evolution of the Continental Crust. Geochemical Perspectives, 2(3), 405. Retrieved from http://dx.doi.org/

Arndt, N., & Davaille, A. (2013). Episodic Earth evolution. Tectonophysics, 609, 661–674. https://doi.org/10.1016/J.TECTO.2013.07.002

Asami, M., Hoshino, M., Miyakawa, K., & Suwa, K. (1982). Metamorphic conditions of staurolite schists of the Ryoke metamorphic belt in the Hazu-Hongusan area, central Japan. Journal of the Geological Society of Japan, 88, 437–450 (in Japanese with English abstract).

Ayers, J. C., Loflin, M., Miller, C. F., Barton, M. D., & Coath, C. D. (2006). In situ oxygen isotope analysis of monazite as a monitor of fluid infiltration during contact metamorphism: Birch Creek Pluton aureole, White Mountains, eastern California. Geology, 34(8), 653. https://doi.org/10.1130/G22185.1

Barbey, P., Nachit, H., & Pons, J. (2001). Magma–host interactions during differentiation and emplacement of a shallow-level, zoned granitic pluton (Tarçouate pluton, Morocco): implications for magma emplacement. Lithos, 58(3–4), 125–143. https://doi.org/10.1016/S0024-4937(01)00053-6

Bartosz, B., Daniel, H., Michael, W., & Michael, J. (2011). Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. American Mineralogist. https://doi.org/10.2138/am.2011.3741

Bateman, P. C., & Chappell, B. W. (1979). Crystallization, fractionation, and solidification of the Tuolumne Intrusive Series, Yosemite National Park, California. GSA Bulletin, 90(5), 465–482. Retrieved from http://dx.doi.org/10.1130/0016-7606(1979 90%3C465:CFASOT%3E2.0.CO

Batumike, J. M., Griffin, W. L., O’Reilly, S. Y., Belousova, E. A., & Pawlitschek, M. (2009). Crustal evolution in the central Congo-Kasai Craton, Luebo, D.R. Congo: Insights from zircon U–Pb ages, Hf-isotope and trace-element data. Precambrian Research, 170(1–2), 107–115. https://doi.org/10.1016/j.precamres.2008.12.001

Bea, F. (1996). Residence of REE, Y, Th and U in Granites and Grustal Protoliths ; Implications for the Chemistry of Crustal Melts. Journal of Petrology, 37(3), 521–552.

Bea, F., Pereira, M. D., Stroh, A., & Gmbtl, P. E. (1994). Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology, 117(94), 291–312. https://doi.org/10.1016/0009-2541(94)90133-3

Becker, T., Garoeb, H., Ledru, P., & Milesi, J. P. (2005). The Mesoproterozoic event within the Rehoboth Basement Inlier of Namibia: Review and new aspects of stratigraphy, geochemistry structure and plate tectonic setting. South African Journal of Geology, 108(4), 465–492. https://doi.org/10.2113/108.4.465

Becker, T., Schreiber, U., Kampunzu, A. B., & Armstrong, R. (2006). Mesoproterozoic rocks of Namibia and their plate tectonic setting. Journal of African Earth Sciences, 46(1–2), 112–140. https://doi.org/10.1016/J.JAFREARSCI.2006.01.015

Bédard, J. H. (2006). Trace element partitioning in plagioclase feldspar. Geochimica et Cosmochimica Acta, 70(14), 3717–3742. https://doi.org/10.1016/J.GCA.2006.05.003

Begg, G. C., Griffin, W. L., Natapov, L. M., O’Reilly, S. Y., Grand, S. P., O’Neill, C. J., … Bowden, P. (2009). The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. Geosphere, 5(1), 23–50. https://doi.org/10.1130/GES00179.1

Belousova, E., Griffin, W., O’Reilly, S. Y., & Fisher, N. (2002). Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5), 602–622. https://doi.org/10.1007/s00410-002-0364-7

Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., Begg, G. C., O’Reilly, S. Y., & Pearson, N. J. (2010). The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos, 119(3–4), 457–466. https://doi.org/10.1016/J.LITHOS.2010.07.024

Berglund, M., & Wieser, M. E. (2011). Isotopic compositions of the elements 2009 ( IUPAC Technical Report )*, 83(2), 397–410. https://doi.org/10.1351/PAC-REP-10-06-02

Bertrand, J. M., Michard, A., Boullier, A. M., & Dautel, D. (1986). Structureand U-Pb geochronology of Central Hoggar (Algeria): a reappraisal of its Pan-African evolution. Tectonics, 5(7), 955–972.

Bertrand, J. M. L., & Caby, M. (1978). Geodynamic Evolution of the Pan-African Orogenic Belt : A new interpretation of the Hoggar Shield (Algerian Sahara ). Geologishe Rundschau, 67(2), 357–388.

Beaumont, C., Jamieson, R. A., Nguyen, M. H., & Medvedev, S. (2004). Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. Journal of Geophysical Research: Solid Earth, 109(B6). https://doi.org/10.1029/2003JB002809

Bingen, B., Jacobs, J., Viola, G., Henderson, I. H. C., Skår, Ø., Boyd, R., … Daudi, E. X. F. (2009). Geochronology of the Precambrian crust in the Mozambique belt in NE Mozambique, and implications for Gondwana assembly. Precambrian Research, 170(3–4), 231–255. https://doi.org/10.1016/j.precamres.2009.01.005

Bingen, B., & van Breemen, O. (1998). U-Pb monazite ages in amphibolite- to granulite-facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway. Contributions to Mineralogy and Petrology, 132(4), 336–353. https://doi.org/10.1007/s004100050428

Black, L. P., Fitzgerald, J. D., & Harley, S. L. (1984). Pb isotopic composition, colour, and microstructure of monazites from a polymetamorphic rock in Antarctica. Contributions to Mineralogy and Petrology, 85(2), 141–148. https://doi.org/10.1007/BF00371704

Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., … Foudoulis, C. (2004). Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1–2), 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003

Black, R., Latouche, L., Liegeois, J. P., Caby, R., & Bertrand, J. M. (1994). Pan-African displaced terranes in the Tuareg Shield (central Sahara). Geology, 22(7), 641–644. https://doi.org/10.1130/0091-7613(1994)022<0641:PADTIT>2.3.CO;2

Bogaerts, A., & Aghaei, M. (2017). Inductively coupled plasma – mass spectrometry: Insights through computer modeling. J. Anal. At. Spectrom., 32(2), 233–261. https://doi.org/10.1039/C6JA00408C

Boher, M., Abouchami, W., Michard, A., Albarede, F., & Arndt, N. T. (1992). Crustal Growth in West Africa at 2.1 Ga. Journal of Geophisical Research, 97(91), 345–369.

Bosch, D., Hammor, D., Bruguier, O., & Caby, R. (2002). Monazite ‘“ in situ ”’ 207 Pb / 206 Pb geochronology using a small geometry high-resolution ion probe . Application to Archaean and Proterozoic rocks. Chemical Geology, 184, 151–165.

Bosch, D., Hammor, D., Bruguier, O., Caby, R., & Luck, J.-M. (2002). Monazite “in situ”207Pb/206Pb geochronology using a small geometry high-resolution ion probe. Application toArchaean and Proterozoic rocks. Chemical Geology, 184(1–2), 151–165.https://doi.org/10.1016/S0009-2541(01)00361-8

Boullier, A. M., Liégeois, J. P., Black, R., Fabre, J., Sauvage, M., & Bertrand, J. M. (1986). LatePan-African tectonics marking the transition from subduction-related calc-alkaline magmatism to within-plate alkaline granitoids (Adrar des Iforas, Mali). Tectonophysics, 132, 233–246.

Bouyo Houketchang, M., Toteu, S. F., Deloule, E., Penaye, J., & Van Schmus, W. R. (2009). U–Pb and Sm–Nd dating of high-pressure granulites from Tcholliré and Banyo regions: Evidence for a Pan-African granulite facies metamorphism in north-central Cameroon. Journal of African Earth Sciences, 54(5), 144–154. https://doi.org/10.1016/J.JAFREARSCI.2009.03.013

Bouyo, M. H., Penaye, J., Barbey, P., Toteu, S. F., & Wandji, P. (2013). Petrology of high-pressure granulite facies metapelites and metabasites from Tcholliré and Banyo regions: Geodynamic implication for the Central African Fold Belt (CAFB) of north-central Cameroon. Precambrian Research, 224, 412–433. https://doi.org/10.1016/J.PRECAMRES.2012.09.025

Bouyo, M. H., Zhao, Y., Penaye, J., Zhang, S. H., & Njel, U. O. (2015). Neoproterozoic subduction-related metavolcanic and metasedimentary rocks from the Rey Bouba Greenstone

Belt of north-central Cameroon in the Central African Fold Belt: New insights into a continental arc geodynamic setting. Precambrian Research, 261, 40–53. https://doi.org/10.1016/J.PRECAMRES.2015.01.012

Breitkreuz, C., Eliwa, H., Khalaf, I., Gameel, K. El, Bühler, B., Sergeev, S., … Murata, M. (2010). Neoproterozoic SHRIMP U–Pb zircon ages of silica-rich Dokhan Volcanics in the North Eastern Desert, Egypt. Precambrian Research, 182(3), 163–174. https://doi.org/10.1016/j.precamres.2010.06.019

Broska, I., Petrík, I., & Williams, C. T. (2000). Coexisting monazite and allanite in peraluminous granitoids of the Tribeč Mountains, Western Carpathians. American Mineralogist, 85(1), 22–32. Retrieved from http://dx.doi.org/10.2138/am-2000-0104

Broska, I., Williams, C. T., Janák, M., & Nagy, G. (2005). Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos, 82(1–2), 71–83. https://doi.org/10.1016/J.LITHOS.2004.12.007

Budzyń, B., Harlov, D. E., Williams, M. L., & Jercinovic, M. J. (2011). Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. American Mineralogist, 96(10), 1547–1567. Retrieved from http://dx.doi.org/10.2138/am.2011.3741

Budzyń, B., Harlov, D. E., Kozub-Budzyń, G. A., & Majka, J. (2017). Experimental constraints on the relative stabilities of the two systems monazite-(Ce) – allanite-(Ce) – fluorapatite and xenotime-(Y) – (Y,HREE)-rich epidote – (Y,HREE)-rich fluorapatite, in high Ca and Na-Ca environments under P-T conditions of 200–1000 . Mineralogy and Petrology, 111(183–217).

Buick, I. S., Clark, C., Rubatto, D., Hermann, J., Pandit, M., & Hand, M. (2010). Constraints on the Proterozoic evolution of the Aravalli-Delhi Orogenic belt (NW India) from monazite geochronology and mineral trace element geochemistry. Lithos, 120(3–4), 511–528. https://doi.org/10.1016/j.lithos.2010.09.011

Cabella, R., Lucchetti, G., & Marescotti, P. (2001). AUTHIGENIC MONAZITE AND XENOTIME FROM PELITIC METACHERTS IN PUMPELLYITE–ACTINOLITE-FACIES CONDITIONS, SESTRI–VOLTAGGIO ZONE, CENTRAL LIGURIA, ITALY. The Canadian Mineralogist, 39(3), 717 LP-727. Retrieved from http://www.canmin.org/content/39/3/717.abstract

Caby, R. (2003). Terrane assembly and geodynamic evolution of central–western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3–4), 133–159. https://doi.org/10.1016/j.jafrearsci.2003.05.003

Campbell, I. H., Reiners, P. W., Allen, C. M., Nicolescu, S., & Upadhyay, R. (2005). He–Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and provenance studies. Earth and Planetary Science Letters, 237(3–4), 402– 432. https://doi.org/10.1016/j.epsl.2005.06.043

Campbell, I. H., & Allen, C. M. (2008). Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 1(8), 554–558. https://doi.org/10.1038/ngeo259

Casillas, R., Nagy, G., Panto, G., Braendle, J., & Forizs, I. (1995). Occurrence of Th, U, Y, Zr and REE-bearing accessory minerals in late-Variscan granitic rocks from the Sierra de Guadarrama (Spain). European Journal of Mineralogy, 7(4), 989 LP-1006. Retrieved from http://eurjmin.geoscienceworld.org/content/7/4/989.abstract

Catlos, E. J. (2013). Generalizations about monazite : Implications for geochronologic studies. American Mineralogist, 98, 819–832.

Catuneanu, O., Wopfner, H., Eriksson, P. G., Cairncross, B., Rubidge, B. S., Smith, R. M. H., & Hancox, P. J. (2005). The Karoo basins of south-central Africa. Journal of African Earth Sciences, 43(1–3), 211–253. https://doi.org/10.1016/J.JAFREARSCI.2005.07.007

Cawood, P. A., Kröner, A., Collins, W. J., Kusky, T. M., Mooney, W. D., & Windley, B. F. (2009). Accretionary orogens through Earth history. Geological Society, London, Special Publications, 318(1), 1 LP-36. https://doi.org/10.1144/SP318.1

Chappell, B. W., & White, A. J. R. (2001). Two contrasting granite types : 25 years later. Australian Journal of Earth Sciences, 48, 489–499.

Chappell, B. W., White, A. J. R., Williams, I. S., Wyborn, D., & Wyborn, L. A. I. (2000). Lachlan Fold Belt granites revisited: High‐ and low‐temperature granites and their implications. Australian Journal of Earth Sciences, 47(1), 123–138. https://doi.org/10.1046/j.1440-0952.2000.00766.x

Chappell, B. W., & White, A. J. R. (1974). Two contrasting granite types. Pacific Geology, 8, 173–174.

Charlier, B. L. A., Ginibre, C., Morgan, D., Nowell, G. M., Pearson, D. G., Davidson, J. P., & Ottley,

C. J. (2006). Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications.

Chemical Geology, 232(3–4), 114–133. https://doi.org/10.1016/J.CHEMGEO.2006.02.015

Chattopadhyay, A., Das, K., Hayasaka, Y., & Sarkar, A. (2015). Syn- and post-tectonic granite plutonism in the Sausar Fold Belt, central India: Age constraints and tectonic implications. Journal of Asian Earth Sciences, 107, 110–121. https://doi.org/10.1016/J.JSEAES.2015.04.006

Chen, W., Honghui, H., Bai, T., & Jiang, S. (2017). Geochemistry of Monazite within Carbonatite Related REE Deposits. Resources, 6(4). https://doi.org/10.3390/resources6040051

Cherniak, D. J. (2010). Diffusion in Accessory Minerals: Zircon, Titanite, Apatite, Monazite and Xenotime. Reviews in Mineralogy and Geochemistry, 72(1), 827–869. https://doi.org/10.2138/rmg.2010.72.18

Cherniak, D. J., Watson, E. B., Grove, M., & Harrison, T. M. (2004). Pb diffusion in monazite: a combined RBS/SIMS study. Geochimica et Cosmochimica Acta, 68(4), 829–840. https://doi.org/10.1016/j.gca.2003.07.012

Christensen, J. N., Halliday, A. N., Lee, D.-C., & Hall, C. M. (1995). In situ Sr isotopic analysis by laser ablation. Earth and Planetary Science Letters, 136(1–2), 79–85. https://doi.org/10.1016/0012-821X(95)00181-6

Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth, 100, 9761–9788.

Christiansen, E. H., Burt, D. M., Sheridan, M. F., & Wilson, R. T. (1983). The petrogenesis of topaz rhyolites from the western United States. Contributions to Mineralogy and Petrology, 83(1), 16–30. https://doi.org/10.1007/BF00373075

Clavier, N., Podor, R., & Dacheux, N. (2011). Crystal chemistry of the monazite structure. Journal of the European Ceramic Society, 31(6), 941–976. https://doi.org/10.1016/J.JEURCERAMSOC.2010.12.019

Clemens J. and Watkins, J. (2001). The fluid regime of high-temperature metamorphism during granitoid magma genesis. Contributions to Mineralogy and Petrology, 140(5), 600–606. https://doi.org/10.1007/s004100000205

Clemens, J. D. (1990). The Granulite — Granite Connexion. In P. Vielzeuf D. and Vidal (Ed.), Granulites and Crustal Evolution (pp. 25–36). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-009-2055-2_3

Clemens, J. . (2003). S-type granitic magmas—petrogenetic issues, models and evidence. Earth-Science Reviews, 61(1–2), 1–18. https://doi.org/10.1016/S0012-8252(02)00107-1

Clemens, J. D., & Wall, V. J. (1981). Origin and crystallization of some peraluminous (S-type) granitic magmas. Canadian Mineralogist, 19, 111–131.

Cocherie, A., Legendre, O., Peucat, J. J., & Kouamelan, A. N. (1998). Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total lead determination: implications for lead behaviour in monazite. Geochimica et Cosmochimica Acta, 62(14), 2475–2497. https://doi.org/10.1016/S0016-7037(98)00171-9

Collins, A. S., & Pisarevsky, S. a. (2005). Amalgamating eastern Gondwana: The evolution of the Circum-Indian Orogens. Earth-Science Reviews, 71(3–4), 229–270. https://doi.org/10.1016/j.earscirev.2005.02.004

Collins, W. J. (2002). Hot orogens, tectonic switching, and creation of continental crust. Geology, 30(6), 535–538. Retrieved from http://dx.doi.org/10.1130/0091-7613(2002)030%3C0535:HOTSAC%3E2.0.CO

Condie, K. C., Arndt, N., Davaille, A., & Puetz, S. J. (2017). Zircon age peaks: Production or preservation of continental crust? Geosphere, 13(2), 227–234. Retrieved from http://dx.doi.org/10.1130/GES01361.1

Condie, K. C., Beyer, E., Belousova, E., Griffin, W. L., & O’Reilly, S. Y. (2005). U–Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust. Precambrian Research, 139(1–2), 42–100. https://doi.org/10.1016/J.PRECAMRES.2005.04.006

Condie, K. C., & Hunter, D. R. (1976). Trace element geochemistry of Archean granitic rocks from the Barberton region, South Africa. Earth and Planetary Science Letters, 29(2), 389–400. https://doi.org/10.1016/0012-821X(76)90144-8

Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., & Jin, Y. (2005). U-Pb ages from the neoproterozoic Doushantuo Formation, China. Science (New York, N.Y.), 308(5718), 95–98. https://doi.org/10.1126/science.1107765

Cornell, D. H., & Pettersson, Å. (2007). Ion probe dating of the Achab Gneiss, a young basement to the Central Bushmanland Ore District? Journal of African Earth Sciences, 47(2), 112–116. https://doi.org/10.1016/J.JAFREARSCI.2006.11.002

Dada, S. S. (1998). Crust-forming ages and proterozoic crustal evoluton in Nigeria: a reappraisal of current interpretations. Precambrian Research, 87(1–2), 65–74. https://doi.org/10.1016/S0301-9268(97)00054-5

Damian Nance, R., & Brendan Murphy, J. (2013). Origins of the supercontinent cycle. Geoscience Frontiers, 4(4), 439–448. https://doi.org/10.1016/J.GSF.2012.12.007

Davidson, J. P., de Silva, S. L., Holden, P., & Halliday, A. N. (1990). Small-scale disequilibrium in a magmatic inclusion and its more silicic host. Journal of Geophysical Research: Solid Earth, 95(B11), 17661–17675. https://doi.org/10.1029/JB095iB11p17661

Davidson, J. P., & Tepley, F. J. (1997). Recharge in Volcanic Systems: Evidence from Isotope Profiles of Phenocrysts. Science, 275(5301), 826. https://doi.org/10.1126/science.275.5301.826

Davidson, J. P., Font, L., Charlier, B. L. A., & Tepley, F. J. (2008). Mineral-scale Sr isotope variation in plutonic rocks – a tool for unravelling the evolution of magma systems. Transactions of the Royal Society of Edinburgh: Earth Sciences, 97(04), 357–367. https://doi.org/10.1017/S0263593300001504

Davidson, J., Tepley, F., Palacz, Z., & Meffan-Main, S. (2001). Magma recharge, contamination and residence times revealed by in situ laser ablation isotopic analysis of feldspar in volcanic rocks. Earth and Planetary Science Letters, 184(2), 427–442. https://doi.org/10.1016/S0012-821X(00)00333-2 De Waele, B., Fitzsimons, I. C. W., Wingate, M. T. D., Tembo, F., Mapani, B., & Belousova, E. A. (2009). The geochronological framework of the Irumide Belt: A prolonged crustal history along the margin of the Bangweulu Craton. American Journal of Science , 309(2), 132–187. https://doi.org/10.2475/02.2009.03

De Waele, B., Johnson, S. P., & Pisarevsky, S. A. (2008). Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton: Its role in the Rodinia puzzle. Precambrian Research, 160(1–2), 127–141. https://doi.org/10.1016/j.precamres.2007.04.020

De Waele, B., Kampunzu, A. B., Mapani, B. S. E., & Tembo, F. (2006). The Mesoproterozoic Irumide belt of Zambia. Journal of African Earth Sciences, 46(1–2), 36–70. https://doi.org/10.1016/J.JAFREARSCI.2006.01.018

Dewey, J. F., & Bird, J. M. (1970). Mountain belts and the new global tectonics. Journal of Geophysical Research, 75(14), 2625–2647. https://doi.org/10.1029/JB075i014p02625

DeWolf, C. P., Belshaw, N., & O’Nions, R. K. (1993). A metamorphic history from micron-scale 207Pb/206Pb chronometry of Archean monazite. Earth and Planetary Science Letters, 120(3–4), 207–220. https://doi.org/10.1016/0012-821X(93)90240-A

Dhuime, B., Hawkesworth, C. J., & Cawood, P. A. (2011). When continents formed. Science, 331(6014), 154–155.

Douglas, D. J., & French, J. B. (1986). An improved interface for inductively coupled plasma-mass spectrometry (ICP-MS). Spectrochimica Acta Part B: Atomic Spectroscopy, 41(3), 197–204. https://doi.org/10.1016/0584-8547(86)80159-8

Eggins, S. M., Kinsley, L. P. J., & Shelley, J. M. G. (1998). Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Applied Surface Science, 127, 278-286.

Eggins, S. M., Grün, R., McCulloch, M. T., Pike, A. W., Chappell, J., Kinsley, L., ... & Taylor, L. (2005). In situ U-series dating by laser-ablation multi-collector ICPMS: new prospects for Quaternary geochronology. Quaternary Science Reviews, 24(23-24), 2523-2538.

Eglinger, A., Tarantola, A., Durand, C., Ferraina, C., Vanderhaeghe, O., André-Mayer, A.-S., … Deloule, E. (2014). Uranium mobilization by fluids associated with Ca–Na metasomatism: A P– T–t record of fluid–rock interactions during Pan-African metamorphism (Western Zambian Copperbelt). Chemical Geology, 386, 218–237. https://doi.org/10.1016/J.CHEMGEO.2014.07.028

Eglinger, A., Vanderhaeghe, O., André-Mayer, A.-S., Goncalves, P., Zeh, A., Durand, C., & Deloule, E. (2016). Tectono-metamorphic evolution of the internal zone of the Pan-African Lufilian orogenic belt (Zambia): Implications for crustal reworking and syn-orogenic uranium mineralizations. Lithos, 240–243, 167–188. https://doi.org/10.1016/J.LITHOS.2015.10.021

Ekwueme, B. N., & Kröner, A. (2006). Single zircon ages of migmatitic gneisses and granulites in the Obudu Plateau: Timing of granulite-facies metamorphism in southeastern Nigeria. Journal of African Earth Sciences, 44(4–5 SPEC. ISS.), 459–469. https://doi.org/10.1016/j.jafrearsci.2005.11.013

Eliwa, H. A., El-Bialy, M. Z., & Murata, M. (2014). Edicaran post-collisional volcanism in the Arabian-Nubian Shield: The high-K calc-alkaline Dokhan Volcanics of Gabal Samr El-Qaa (592±5Ma), North Eastern Desert, Egypt. Precambrian Research, 246, 180–207. https://doi.org/10.1016/j.precamres.2014.03.015

Engi, M. (2017). Petrochronology Based on REE-Minerals: Monazite, Allanite, Xenotime, Apatite. Reviews in Mineralogy and Geochemistry, 83(1), 365-418. Retrieved from http://rimg.geoscienceworld.org/content/83/1/365.abstract

Erickson, T. M., Pearce, M. a., Taylor, R. J. M., Timms, N. E., Clark, C., Reddy, S. M., & Buick, I. S. (2015). Deformed monazite yields high-temperature tectonic ages. Geology, 43, 383–386. https://doi.org/10.1130/G36533.1

Eriksson, P. G., Altermann, W., & Hartzer, F. J. (2006). The Transvaal Supergroup and its precursors. In M. R. Johnson, C. R. Anhaeusser, & R. J. Thomas (Eds.), The Geology of South Africa (pp. 237–260). Geological Society of South Africa/Council for Geoscience, Johannesburg/Pretoria,.

Evans, E. H., Ebdon, L., & Rowley, L. (2002). Comparative study of the determination of equilibrium dissociation temperature in inductively coupled plasma-mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4), 741–754. https://doi.org/10.1016/S0584-8547(02)00003-4

Evans, J., & Zalasiewicz, J. (1996). U–Pb, Pb–Pb and Sm–Nd dating of authigenic monazite: implications for the diagenetic evolution of the Welsh Basin. Earth and Planetary Science Letters, 144(3–4), 421–433. https://doi.org/10.1016/S0012-821X(96)00177-X

Fernandez-Alonso, M., Cutten, H., De Waele, B., Tack, L., Tahon, A., Baudet, D., & Barritt, S. D. (2012). The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): The result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events. Precambrian Research, 216–219, 63–86. https://doi.org/10.1016/J.PRECAMRES.2012.06.007

Ferré, E., Gleizes, G., & Caby, R. (2002). Obliquely convergent tectonics and granite emplacement in the Trans-Saharan belt of Eastern Nigeria: a synthesis. Precambrian Research, 114, 199–219.

Fisher, C. M., Hanchar, J. M., Miller, C. F., Phillips, S., Vervoort, J. D., & Whitehouse, M. J. (2017). Combining Nd isotopes in monazite and Hf isotopes in zircon to understand complex open-system processes in granitic magmas. Geology . https://doi.org/10.1130/G38458.1

Fitzsimons, I. C. W., Kinny, P. D., & Harley, S. L. (1997). Two stages of zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints on the duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica. Terra Nova, 9(1), 47–51. https://doi.org/10.1046/j.1365-3121.1997.d01-8.x

Foster, G., Gibson, H. D., Parrish, R., Horstwood, M. S. A., Fraser, J., & Tindle, A. (2002). Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chemical

Geology, 191(1–3), 183–207. https://doi.org/10.1016/S0009-2541(02)00156-0 Franz, G., Andrehs, G., & Rhede, D. (1996). Crystal chemistry of monazite and xenotime from Saxothuringian-Moldanubian metapelites , NE Bavaria , Germany. European Journal of Mineralogy, 8, 1097–1118.

Frimmel, H. E. (2000). New U-Pb zircon ages for the Kuboos pluton in the Pan-African Gariep belt, South Africa: Cambrian mantle plume or far field collision effect? South African Journal of Geology, 103(3–4), 207–214. Retrieved from http://dx.doi.org/10.2113/1030207

Frimmel, H. E., & Frank, W. (1998). Neoproterozoic tectono-thermal evolution of the Gariep Belt and its basement , Namibia and South Africa. Precambrian Research, 90, 1–28.

Frimmel, H. E., Tack, L., Basei, M. S., Nutman, A. P., & Boven, A. (2006). Provenance and chemostratigraphy of the Neoproterozoic West Congolian Group in the Democratic Republic of Congo. Journal of African Earth Sciences, 46(3), 221–239. https://doi.org/10.1016/J.JAFREARSCI.2006.04.010

Fritz, H., Abdelsalam, M., Ali, K. A., Bingen, B., Collins, A. S., Fowler, A. R., … Viola, G. (2013). Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution. Journal of African Earth Sciences, 86, 65–106. https://doi.org/10.1016/J.JAFREARSCI.2013.06.004

Fujimaki, H., & Tatsumoto, M. (1984). Partition coefficients of Hf, Zr, and ree between phenocrysts and groundmasses. Journal of Geophisical Research, 89, 662–672.

Fujimaki, H., Wang, C., Aoki, K., & Kato, Y. (1992). Rb-Sr chronological study of the Hashigami plutonic mass, northern Kitakami, northeastern Japan. Journal of Mineralogy, Petrology and Economic Geology, 87, 187–196.

Gagnevin, D., Daly, J. S., Poli, G., & Morgan, D. (2005). Microchemical and Sr Isotopic Investigation of Zoned K-feldspar Megacrysts: Insights into the Petrogenesis of a Granitic System and Disequilibrium Crystal Growth. Journal of Petrology, 46(8), 1689–1724. Retrieved from http://dx.doi.org/10.1093/petrology/egi031

Gao, P., Zheng, Y., & Zhao, Z. (2016). Experimental melts from crustal rocks: A lithochemical constraint on granite petrogenesis. Lithos, 266–267, 133–157. https://doi.org/10.1016/J.LITHOS.2016.10.005

Gilbert, S., Olin, P., Thompson, J., & Danyushevsky, L. (2017). Matrix dependency for oxide production rates by LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 32, 638–646. https://doi.org/10.1039/C6JA00395H

Glaus, R., Kaegi, R., Krumeich, F., & Günther, D. (2010). Phenomenological studies on structure and elemental composition of nanosecond and femtosecond laser-generated aerosols with implications on laser ablation inductively coupled plasma mass spectrometry. Spectrochimica Acta - Part B Atomic Spectroscopy, 65(9–10), 812–822. https://doi.org/10.1016/j.sab.2010.07.005

Goad, B. E., & Čenrý, P. (1981). Peraluminous pegmatitic granites and their pegmatite aureoles in the Winnipeg River district, southeastern Manitoba. Canadian Mineralogist, 19, 177–194.

Goldstein, S. L., Arndt, N. T., & Stallard, R. F. (1997). The history of a continent from U-Pb ages of zircons from Orinoco River sand and Sm-Nd isotopes in Orinoco basin river sediments. Chemical Geology, 139(1–4), 271–286. https://doi.org/10.1016/S0009-2541(97)00039-9

Goldstein, S. L., O’Nions, R. K., & Hamilton, P. J. (1984). A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 70(2), 221– 236. https://doi.org/10.1016/0012-821X(84)90007-4

Goodenough, K. M., Lusty, P. A. J., Roberts, N. M. W., Key, R. M., & Garba, A. (2014). Post-collisional Pan-African granitoids and rare metal pegmatites in western Nigeria: Age, petrogenesis, and the ‘pegmatite conundrum.’ Lithos, 200–201, 22–34. https://doi.org/10.1016/j.lithos.2014.04.006

Goscombe, B., Armstrong, R., & Barton, J. M. (2000). Geology of the Chewore Inliers, Zimbabwe : constraining the Mesoproterozoic to Palaeozoic evolution of the Zambezi Belt. Journal of African Earth Sciences, 30(3), 589–627.

Grantham, G. H., Maboko, M., & Eglington, B. M. (2003). A review of the evolution of the Mozambique Belt and implications for the amalgamation and dispersal of Rodinia and

Gondwana. Geological Society, London, Special Publications, 206(1), 401–425. https://doi.org/10.1144/GSL.SP.2003.206.01.19

Grantham, G. H., Macey, P. H., Horie, K., Kawakami, T., Ishikawa, M., Satish-Kumar, M., … Azevedo, S. (2013). Comparison of the metamorphic history of the Monapo Complex, northern Mozambique and Balchenfjella and Austhameren areas, Sør Rondane, Antarctica: Implications for the Kuunga Orogeny and the amalgamation of N and S. Gondwana. Precambrian Research, 234, 85–135. https://doi.org/10.1016/j.precamres.2012.11.012

Gray, A. L., & Williams, J. G. (1987). Oxide and Doubly Charged Ion Response of a Commercial Inductively Coupled Plasma Mass Spectrometry Instrument. Journal of Analytical Atomic Spectrometry, 2(September), 599–606. https://doi.org/10.1039/ja9870200599

Gray, A. L. (1986). Mass spectrometry with an inductively coupled plasma as an ion source: the influence on ultratrace analysis of background and matrix response. Spectrochimica Acta Part B: Atomic Spectroscopy, 41(1), 151–167. https://doi.org/10.1016/0584-8547(86)80147-1

Gray, D. R., Foster, D. A., Meert, J. G., Goscombe, B. D., Armstrong, R., Trouw, R. A. J., & Passchier, C. W. (2008). A Damara orogen perspective on the assembly of southwestern

Gondwana. Geological Society, London, Special Publications, 294(1), 257–278. https://doi.org/10.1144/SP294.14

Gregory, C. J., McFarlane, C. R. M., Hermann, J., & Rubatto, D. (2009). Tracing the evolution of calc-alkaline magmas: In-situ Sm–Nd isotope studies of accessory minerals in the Bergell Igneous Complex, Italy. Chemical Geology, 260(1–2), 73–86. https://doi.org/10.1016/J.CHEMGEO.2008.12.003

Grew, E. S., Yates, M. G., & Wilson, C. J. L. (2008). Aureoles of Pb(II)-enriched feldspar around monazite in paragneiss and anatectic pods of the Napier Complex, Enderby Land, East Antarctica: the roles of dissolution-reprecipitation and diffusion. Contributions to Mineralogy and Petrology, 155(3), 363–378. https://doi.org/10.1007/s00410-007-0247-z

Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., van Achterbergh, E., O’Reilly, S. Y., & Shee, S. R. (2000). The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1), 133–147. https://doi.org/10.1016/S0016-7037(99)00343-9

Grove, M., & Harrison, T. M. (1996). 40Ar* diffusion in Fe-rich biotite. American Mineralogist, 81, 940–951.

Guillong, M., Horn, I., & Gunther, D. (2003). A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 18(10), 1224–1230. https://doi.org/10.1039/B305434A

Guillong, M., & Gunther, D. (2002). Effect of particle size distribution on ICP-induced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry. Journal of Analytical Atomic Spectrometry, 17(8), 831–837. https://doi.org/10.1039/b202988j

Hacker, B. R., Kelemen, P. B., & Behn, M. D. (2011). Differentiation of the continental crust by relamination. Earth and Planetary Science Letters, 307(3–4), 501–516. https://doi.org/10.1016/J.EPSL.2011.05.024

Hanchar, J. M., & van Westrenen, W. (2007). Rare Earth Element Behavior in Zircon-Melt Systems. Elements, 3(1), 37 LP-42. Retrieved from http://elements.geoscienceworld.org/content/3/1/37.abstract

Hanselman, D. S., Sesi, N. N., Huang, M., & Hieftje, G. M. (1994). The effect of sample matrix on electron density, electron temperature and gas temperature in the argon inductively coupled plasma examined by Thomson and Rayleigh scattering. Spectrochimica Acta Part B: Atomic Spectroscopy, 49(5), 495–526. https://doi.org/10.1016/0584-8547(94)80042-1

Hanson, R. E., Wardlaw, M. S., Wilson, T. J., Mwale, G., Sciences, G., Diego, S., & Box, P. O. (1993). U-Pb zircon ages from the Hook granite massif and Mwembeshi dislocation : constraints on Pan-African deformation , plutonism , and transcurrent shearing in central Zambia. Precambrian Research, 63, 189–209.

Hargrove, U. S., Stern, R. J., Kimura, J.-I., Manton, W. I., & Johnson, P. R. (2006). How juvenile is the Arabian–Nubian Shield? Evidence from Nd isotopes and pre-Neoproterozoic inherited zircon in the Bi’r Umq suture zone, Saudi Arabia. Earth and Planetary Science Letters, 252(3–4), 308– 326. https://doi.org/10.1016/J.EPSL.2006.10.002

Harley, S. L., & Nandakumar, V. (2014). Accessory Mineral Behaviour in Granulite Migmatites: a Case Study from the Kerala Khondalite Belt, India. Journal of Petrology, 55(10), 1965–2002. https://doi.org/10.1093/petrology/egu047

Harlov Daniel E. and Procházka, V. and F. H.-J. and M. D. (2008). Origin of monazite–xenotime– zircon–fluorapatite assemblages in the peraluminous Melechov granite massif, Czech Republic. Mineralogy and Petrology, 94(1), 9–26. https://doi.org/10.1007/s00710-008-0003-8

Harlov, D. E., & Hetherington, C. J. (2010). Partial high-grade alteration of monazite using alkali-bearing fluids: Experiment and nature. American Mineralogist, 95(7), 1105–1108. Retrieved from http://dx.doi.org/10.2138/am.2010.3525

Harrison, T. M., Catlos, E. J., & Montel, J.-M. (2002). U-Th-Pb Dating of Phosphate Minerals. (J. M. Hughes, M. Kohn, & J. Rakovan, Eds.), Reviews in Mineralogy and Geochemistry (Vol. 48). Chantilly, Virginia: Mineralogical Society of America. https://doi.org/10.2138/rmg.2002.48.14

Harrison, T. M., Duncan, I., & McDougall, I. (1985). Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49(11), 2461–2468. https://doi.org/10.1016/0016-7037(85)90246-7

Hattendorf, B., Gusmini, B., Dorta, L., Houk, R. S., & Günther, D. (2016). Abundance and Impact of Doubly Charged Polyatomic Argon Interferences in ICPMS Spectra. Analytical Chemistry, 88(14), 7281–7288. https://doi.org/10.1021/acs.analchem.6b01614

Hauri, E. H., Wagner, T. P., & Grove, T. L. (1994). Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117(1–4), 149–166. https://doi.org/10.1016/0009-2541(94)90126-0

Hawkesworth, C. J., Cawood, P. A., Dhuime, B., & Kemp, T. I. (2017). Earth’s continental lithosphere through time. Annual Review of Earth and Planetary Sciences, 45, 169–198.

Hawkesworth, C., Cawood, P., Kemp, T., Storey, C., & Dhuime, B. (2009). A Matter of Preservation. Science, 323(5910), 49 LP-50. https://doi.org/10.1126/science.1168549

Hayama, Y., Yamada, T., Ito, M., Kutsukake, T., Masaoka, K., Miyakawa, K., … Tsumura, Y. (1982). Geology of the Ryoke Belt in the eastern Kinki District, Japan-The phase-divisions and the mutual relations of the granitic rocks. J. Geol. Soc. Japan, 88(6), 451–466.

Haynes., W. M. (2013). CRC Handbook of Chemistry and Physics (94th ed.). Boca Raton: CRC Press.

Hetherington, C. J., Backus, E. L., McFarlane, C. R., Fisher, C. M., & Pearson, D. G. (2017). Origins of Textural, Compositional, and Isotopic Complexity in Monazite and Its Petrochronological Analysis. In Desmond E. Moser, Fernando Corfu, James R. Darling, Steven M. Reddy, & Kimberly Tait (Eds.), Microstructural Geochronology: Planetary Records Down to Atom Scale (pp. 63–90). New Jersey: John Wiley & Sons, Inc.

Hetherington, C. J., Harlov, D. E., & Budzyń, B. (2010). Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineralogy and Petrology, 99(3), 165–184. https://doi.org/10.1007/s00710-010-0110-1

Hidaka, H., Ebihara, M., & Shima, M. (1995). Determination of the isotopic compositions of samarium and gadolinium by thermal ionization mass spectrometry. Analytical Chemistry, 67(8), 1437–1441.

Hietpas, J., Samson, S., Moecher, D., & Schmitt, A. K. (2010). Recovering tectonic events from the sedimentary record: Detrital monazite plays in high fidelity. Geology, 38(2), 167–170. https://doi.org/10.1130/G30265.1

Hietpas, J., Samson, S., & Moecher, D. (2011). A direct comparison of the ages of detrital monazite versus detrital zircon in Appalachian foreland basin sandstones: Searching for the record of Phanerozoic orogenic events. Earth and Planetary Science Letters, 310(3–4), 488–497. https://doi.org/10.1016/j.epsl.2011.08.033

Hinton, R. W., & Upton, B. G. . (1991). The chemistry of zircon: Variations within and between large crystals from syenite and alkali basalt xenoliths. Geochimica et Cosmochimica Acta, 55(11), 3287–3302. https://doi.org/10.1016/0016-7037(91)90489-R

Hirahara, Y., Chang, Q., Miyazaki, T., Takahashi, T., & Kimura, J.-I. (2012). Improved Nd chemical separation technique for 143Nd/144Nd analysis in geological samples using packed Ln resin columns. JAMSTEC Report of Research and Development, 15, 27–33. https://doi.org/10.5918/jamstecr.15.27

Holbrook, W. S., Mooney, W. D., & Christensen, N. I. (1992). The seismic velocity structure of the deep continental crust. Continental Lower Crust, 23, 1–43.

Holder, R. M., Hacker, B. R., Kylander-Clark, A. R. C., & Cottle, J. M. (2015). Monazite trace-element and isotopic signatures of (ultra)high-pressure metamorphism: Examples from the Western Gneiss Region, Norway. Chemical Geology, 409, 99–111. https://doi.org/10.1016/j.chemgeo.2015.04.021

Horstwood, M. S. A., Foster, G. L., Parrish, R. R., Noble, S. R., & Nowell, G. M. (2003). Common-Pb corrected in situ U–Pb accessory mineral geochronology by LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 18(8), 837. https://doi.org/10.1039/b304365g

Hoshino, M., & Ishihara, S. (2007). REE-bearing minerals of the late Cretaceous ilmenite-series granites of the inner zone of southwest Japan. Mining Geology, 57, 103–114.

Hoshino, M., Kimata, M., Shimizu, M., Nishida, N., & Fujiwara, T. (2006). Allanite-(Ce) in granitic rocks from Japan: gentetic implications of patterns of REE and Mn enrichment. The Canadian Mineralogist, 44(1), 45–62. https://doi.org/10.2113/gscanmin.44.1.45

Hoshino, M., Kimata, M., Shimizu, M., Nishida, N., Fujiwara, T., Arakawa, Y., … Nakai, S. (2007). Allanite-(Ce) as an indicator of the origin of granitic rocks in Japan: importance of Sr–Nd isotopic and chemical composition. The Canadian Mineralogist, 44(6), 45 LP-62. Retrieved from http://www.canmin.org/content/45/6/1329.abstract

Hoshino, M., Watanabe, Y., & Ishihara, S. (2012). Crystal chemistry of monazite from the granitic rocks of Japan: petrogenetic implications. The Canadian Mineralogist, 50(5), 1331 LP-1346. Retrieved from http://www.canmin.org/content/50/5/1331.abstract

Hoskin, P. W. O., & Ireland, T. R. (2000). Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7), 627–630. https://doi.org/10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2

Houk, R. S., & Praphairaksit, N. (2001). Dissociation of polyatomic ions in the inductively coupled plasma. Spectrochimica Acta Part B: Atomic Spectroscopy, 56, 1069–1096.

Huminicki, D. M. C., & Hawthorne, F. C. (2002). The Crystal Chemistry of the Phosphate Minerals. Reviews in Mineralogy and Geochemistry, 48(1), 123–253. Retrieved from http://dx.doi.org/10.2138/rmg.2002.48.5

Iizuka, T., Campbell, I. H., Allen, C. M., Gill, J. B., Maruyama, S., & Makoka, F. (2013). Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers. Geochimica et Cosmochimica Acta, 107, 96–120. https://doi.org/10.1016/j.gca.2012.12.028

Iizuka, T., Eggins, S. M., McCulloch, M. T., Kinsley, L. P. J., & Mortimer, G. E. (2011). Precise and accurate determination of 147Sm/144Nd and 143Nd/144Nd in monazite using laser ablation-MC-ICPMS. Chemical Geology, 282(1), 45–57. https://doi.org/10.1016/j.chemgeo.2011.01.008

Iizuka, T., Komiya, T., Rino, S., Maruyama, S., & Hirata, T. (2010). Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochimica et Cosmochimica Acta, 74(8), 2450–2472. https://doi.org/10.1016/j.gca.2010.01.023

Iizuka, T., McCulloch, M. T., Komiya, T., Shibuya, T., Ohta, K., Ozawa, H., … Collerson, K. D. (2010). Monazite geochronology and geochemistry of meta-sediments in the Narryer Gneiss Complex, Western Australia: constraints on the tectonothermal history and provenance. Contributions to Mineralogy and Petrology, 160(6), 803–823. https://doi.org/10.1007/s00410-010-0508-0

Iizuka, T., Nebel, O., & McCulloch, M. T. (2011). Tracing the provenance and recrystallization processes of the Earth’s oldest detritus at Mt. Narryer and Jack Hills, Western Australia: An in situ Sm–Nd isotopic study of monazite. Earth and Planetary Science Letters, 308(3–4), 350–358. https://doi.org/10.1016/j.epsl.2011.06.006

Iizuka, T., Yamaguchi, T., Itano, K., Hibiya, Y., & Suzuki, K. (2017). What Hf isotopes in zircon tell us about crust–mantle evolution. Lithos, 274, 304-327.

Iizumi, S., Imaoka, T., & Kagami, H. (2000). Sr–Nd isotope ratios of gabbroic and dioritic rocks in a Cretaceous-Paleogene granite terrain, Southwest Japan. Island Arc, 9(1), 113–127. https://doi.org/10.1046/j.1440-1738.2000.00265.x

Ireland, T. R., & Gibson, G. M. (1998). SHRIMP monazite and zircon geochronology of high-grade metamorphism in New Zealand. Journal of Metamorphic Geology, 16(2), 149–167. https://doi.org/10.1111/j.1525-1314.1998.00112.x

Ishihara, S., & Chappell, B. W. (2007). Chemical compositions of the late Cretaceous Ryoke granitoids of the Chubu District, central Japan–Revisited. Bulletin of the Geological Survey of Japan, 58(9–10), 323–350.

Ishihara, S. (1971). Major molybdenum deposits and related granitic rocks in Japan. Report of the Geological Survey of Japan, 239, 68.

Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27, 293–305.

Ishihara, S., & Matsuhisa, Y. (2002). Oxygen isotopic constraints on the geneses of the Cretaceous-Paleogene granitoids in the Inner Zone of Southwest Japan. Bull. Geol. Surv. Japan, 53(4), 421–438.

Ishihara, S., & Murakami, H. (2006). Fractionated ilmenite- series granites in southwest Japan: source magma for REE- Sn-W mineralizations. Resource Geology, 56, 235–256.

Ishihara, S., & Sasaki, A. (1989). Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the Sierra Nevada batholith—A reconnaissance study. Geology, 17(9), 788–791. Retrieved from http://dx.doi.org/10.1130/0091-7613(1989)017%3C0788:SIROTM%3E2.3.CO

Isozaki, Y., Aoki, K., Nakama, T., & Yanai, S. (2010). New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Research, 18(1), 82–105. https://doi.org/10.1016/j.gr.2010.02.015

Itano, K., & Iizuka, T. (2017). Unraveling the mechanism and impact of oxide production in LA-ICP-MS by comprehensive analysis of REE-Th-U phosphates. Journal of Analytical Atomic Spectrometry, 32(10). https://doi.org/10.1039/c7ja00182g

Itano, K., Iizuka, T., Chang, Q., Kimura, J.-I., & Maruyama, S. (2016). U–Pb chronology and geochemistry of detrital monazites from major African rivers: Constraints on the timing and nature of the Pan-African Orogeny. Precambrian Research, 282(139–156). https://doi.org/10.1016/j.precamres.2016.07.008

Itano, K., Iizuka, T., & Hoshino, M. (2017). REE-Th-U and Nd isotope systematics of monazites in magnetite- and ilmenite-series granitic rocks of the Japan arc: Implications for its use as a tracer of magma evolution and detrital provenance. Chemical Geology. https://doi.org/10.1016/j.chemgeo.2017.11.033

Jacobs, J., Bauer, W., & Fanning, C. M. (2003). New age constraints for Grenville-age metamorphism in western central Dronning Maud Land (East Antarctica), and implications for the palaeogeography of Kalahari in Rodinia. International Journal of Earth Sciences, 92(3), 301– 315. https://doi.org/10.1007/s00531-003-0335-x

Jacobs, J., Bingen, B., Thomas, R. J., Bauer, W., Wingate, M., & Feitio, P. (2008). Early Palaeozoic orogenic collapse and voluminous late-tectonic magmatism in Dronning Maud Land and Mozambique : insights into the partially delaminated orogenic root of the East African-Antarctic Orogen? Geodynamic Evolution of East Antarctica: A Key to the East–West Gondwana Connection, 308, 69–90. https://doi.org/10.1144/SP308.3

Jacobs, J., Pisarevsky, S., Thomas, R. J., & Becker, T. (2008). The Kalahari Craton during the assembly and dispersal of Rodinia. Precambrian Research, 160(1–2), 142–158. https://doi.org/10.1016/j.precamres.2007.04.022

Jagoutz, O. E. (2010). Construction of the granitoid crust of an island arc. Part II: a quantitative petrogenetic model. Contributions to Mineralogy and Petrology, 160(3), 359–381. https://doi.org/10.1007/s00410-009-0482-6

Jagoutz, O., Müntener, O., Schmidt, M. W., & Burg, J.-P. (2011). The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: Evidence from the Kohistan arc. Earth and Planetary Science Letters, 303(1–2), 25–36. https://doi.org/10.1016/J.EPSL.2010.12.017

Jagoutz, O., & Schmidt, M. W. (2012). The formation and bulk composition of modern juvenile continental crust: The Kohistan arc. Chemical Geology, 298–299, 79–96. https://doi.org/10.1016/J.CHEMGEO.2011.10.022

Jamieson, R. A., Beaumont, C., Medvedev, S., & Nguyen, M. H. (2004). Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen.

Journal of Geophysical Research: Solid Earth, 109(B6). https://doi.org/10.1029/2003JB002811

Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J. O., & Spandler, C. (2008). Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: Implications for allanite-monazite-xenotime phase relations from 250 to 610??C. Journal of Metamorphic Geology, 26(5), 509–526. https://doi.org/10.1111/j.1525-1314.2008.00774.x

Jantos, E., Berger, A., Gnos, E., Whitehouse, M., Eric, L., & Thomas, P. (2012). Constraints on fluid evolution during metamorphism from U–Th–Pb systematics in Alpine hydrothermal monazite. Chemical Geology, 326–327(61–71).

Jercinovic, M. J., & Williams, M. L. (2005). Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects. American Mineralogist, 90(4), 526–546. https://doi.org/10.2138/am.2005.1422

Johannes Wilhelm and Holtz, F. (1996). The Granite System Qz-Ab-Or-An. In Petrogenesis and Experimental Petrology of Granitic Rocks (pp. 229–243). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-61049-3_7

John, T., Schenk, V., Haase, K., Scherer, E., & Tembo, F. (2003). Evidence for a Neoproterozoic ocean in south-central Africa from mid-ocean-ridge-type geochemical signatures and pressure-temperature estimates of Zambian eclogites. Geology, 31(3), 243–246. https://doi.org/10.1130/0091-7613(2003)031<0243:EFANOI>2.0.CO;2

John, T., Schenk, V., Mezger, K., & Tembo, F. (2004). Timing and PT Evolution of Whiteschist Metamorphism in the Lufilian Arc–Zambezi Belt Orogen (Zambia): Implications for the Assembly of Gondwana. The Journal of Geology, 112(1), 71–90. https://doi.org/10.1086/379693

Johnson, K. T. M. (1998). Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contributions to Mineralogy and Petrology, 133(1), 60–68. https://doi.org/10.1007/s004100050437

Johnson, P. R. (2014). An expanding Arabian-Nubian shield geochronologic and isotopic dataset: defining limits and confirming the tectonic setting of a Neoproterozoic Accretionary Orogen. Open Geol. J., (8), 3–33.

Johnson, P. R., Andresen, A., Collins, A. S., Fowler, A. R., Fritz, H., Ghebreab, W., … Stern, R. J. (2011). Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. Journal of African Earth Sciences, 61(3), 167–232. https://doi.org/10.1016/J.JAFREARSCI.2011.07.003

Johnson, S. P., De Waele, B., & Liyungu, K. A. (2006). U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon geochronology of granitoid rocks in eastern Zambia: Terrane subdivision of the Mesoproterozoic Southern Irumide Belt. Tectonics, 25(6). https://doi.org/10.1029/2006TC001977

Johnson, S. P., De Waele, B., Evans, D., Banda, W., Tembo, F., Milton, J. A., & Tani, K. (2007). Geochronology of the Zambezi Supracrustal Sequence, Southern Zambia: A Record of Neoproterozoic Divergent Processes along the Southern Margin of the Congo Craton. The

Journal of Geology, 115(3), 355–374. https://doi.org/10.1086/512757

Johnson, S. P., Rivers, T., & De Waele, B. (2005). A review of the Mesoproterozoic to early Palaeozoic magmatic and tectonothermal history of south-central Africa: implications for Rodinia and Gondwana. Journal of the Geological Society, 162(3), 433–450. https://doi.org/10.1144/0016-764904-028

Kagami, H., Kawano, Y., Ikawa, T., Ishioka, J., Kagashima, S., Yuhara, M., … Tainosho, Y. (1999). Transition of space and time of Cretaceous to Tertiary igneous activity and lower crust of Honshu Arc: examination based on Rb–Sr whole rock isochron ages and Sr and Nd isotopes. Memoirs of the Geological Society of Japan, 53, 1–19.

Kagami, H. (1973). A Rb—Sr Geochronological study of the Ryoke granites in Chubu district, central Japan. The Journal of the Geological Society of Japan, 79(1), 1–10. https://doi.org/10.5575/geosoc.79.1

Kampunzu, a. B., Tembo, F., Matheis, G., Kapenda, D., & Huntsman-Mapila, P. (2000). Geochemistry and Tectonic Setting of Mafic Igneous Units in the Neoproterozoic Katangan Basin, Central Africa: Implications for Rodinia Break-up. Gondwana Research, 3(2), 125–153. https://doi.org/10.1016/S1342-937X(05)70093-9

Katayama, I., Maruyama, S., Parkinson, C. D., Terada, K., & Sano, Y. (2001). Ion micro-probe U–Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan. Earth and Planetary Science Letters, 188(1–2), 185–198. https://doi.org/10.1016/S0012-821X(01)00319-3

Kawakami, T., & Suzuki, K. (2011). CHIME monazite dating as a tool to detect polymetamorphism in high-temperature metamorphic terrane: Example from the Aoyama area, Ryoke metamorphic belt, Southwest Japan. Island Arc, 20, 439–453.

Kay, R. W., & Mahlburg Kay, S. (1993). Delamination and delamination magmatism. Tectonophysics, 219(1–3), 177–189. https://doi.org/10.1016/0040-1951(93)90295-U

Kelly, N. M., Harley, S. L., & Möller, A. (2012). Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration. Chemical Geology, 322–323, 192– 208. https://doi.org/10.1016/j.chemgeo.2012.07.001

Kelts, A. B., Ren, M., & Anthony, E. Y. (2008). Monazite occurrence, chemistry, and chronology in the granitoid rocks of the Lachlan Fold Belt, Australia: An electron microprobe study. American Mineralogist, 93(2–3), 373–383. https://doi.org/10.2138/am.2008.2600

Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A., & Kinny, P. D. (2006). Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439, 580. Retrieved from https://doi.org/10.1038/nature04505

Kent, A. J. R., & Ungerer, C. A. “Andy.” (2005). Production of barium and light rare earth element oxides during LA-ICP-MS microanalysis. Journal of Analytical Atomic Spectrometry, 20, 1256. https://doi.org/10.1039/b505734e

Key, R. M., Liyungu, A. K., Njamu, F. M., Somwe, V., Banda, J., Mosley, P. N., & Armstrong, R. A. (2001). The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization. Journal of African Earth Sciences, 33(3–4), 503–528. https://doi.org/10.1016/S0899-5362(01)00098-7

Key, R. M., Johnson, C. C., Horstwood, M. S. A., Lapworth, D. J., Knights, K. V., Kemp, S. J., … Arisekola, T. (2012). Investigating high zircon concentrations in the fine fraction of stream sediments draining the Pan-African Dahomeyan Terrane in Nigeria. Applied Geochemistry, 27(8), 1525–1539. https://doi.org/10.1016/J.APGEOCHEM.2012.04.009

Kimura, J. I., Takahashi, T., & Chang, Q. (2013). A new analytical bias correction for in situ Sr isotope analysis of plagioclase crystals using laser-ablation multiple-collector inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 28(6), 945–957.

Kimura, J.-I. J.-I., Chang, Q., Itano, K., Iizuka, T., Vaglarov, B. S. B. S., & Tani, K. (2015). An improved U–Pb age dating method for zircon and monazite using 200/266 nm femtosecond laser ablation and enhanced sensitivity multiple-Faraday collector inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 30(2), 494–505. https://doi.org/10.1039/C4JA00257A

Kimura, J.-I., Chang, Q., & Hiroshi, K. (2013). Standardless determination of Nd isotope ratios in glasses and minerals using laser-ablation multiple-collector inductively coupled plasma mass spectrometry with a low-oxide molecular yield interface setup, 28, 1522–1529. https://doi.org/10.1039/c3ja50109d

Kimura, J.-I., Chang, Q., & Tani, K. (2011). Optimization of ablation protocol for 200 nm UV femtosecond laser in precise U – Pb age dating coupled to multi-collector ICP mass spectrometry. Geochmical Journal, 45, 283–296.

Kinoshita, O. (1995). Migration of igneous activities related to ridge subduction in Southwest Japan and the East Asian continental margin from the Mesozoic to the Paleogene. Tectonophysics, 245(1–2), 25–35. https://doi.org/10.1016/0040-1951(94)00211-Q

Koegelenberg, C., Kisters, A. F. M., Kramers, J. D., & Frei, D. (2015). U–Pb detrital zircon and 39Ar–40Ar muscovite ages from the eastern parts of the Karagwe-Ankole Belt: Tracking Paleoproterozoic basin formation and Mesoproterozoic crustal amalgamation along the western margin of the Tanzania Craton. Precambrian Research, 269, 147–161. https://doi.org/10.1016/J.PRECAMRES.2015.08.014

Kohn, M. J., Wieland, M. S., Parkinson, C. D., & Upreti, B. N. (2005). Five generations of monazite in Langtang gneisses: implications for chronology of the Himalayan metamorphic core. Journal of Metamorphic Geology, 23(5), 399–406. https://doi.org/10.1111/j.1525-1314.2005.00584.x

Kokonyangi, J., Armstrong, R., Kampunzu, a. B., Yoshida, M., & Okudaira, T. (2004). U-Pb zircon geochronology and petrology of granitoids from Mitwaba (Katanga, Congo): Implications for the evolution of the Mesoproterozoic Kibaran belt. Precambrian Research, 132(1–2), 79–106. https://doi.org/10.1016/j.precamres.2004.02.007

Korenaga, J. (2013). Initiation and evolution of plate tectonics on Earth: theories and observations. Annual Review of Earth and Planetary Sciences, 41(1), 117–151.

Kosler, J., Tubrett, M. N., & Sylvester, P. J. (2001). Application of Laser Ablation ICP-MS to U-Th-Pb Dating of Monazite. Geostandards and Geoanalytical Research, 25(2–3), 375–386. https://doi.org/10.1111/j.1751-908X.2001.tb00612.x

Kretz, R. (1983). Symbols for rock-forming minerals. American Mineralogist, 68, 277–279. Retrieved from http://ci.nii.ac.jp/naid/10023911240/ja/

Kröner, A., & Stern, R. J. (2004). Pan-African Orogeny. In R. Shell, L. R. M. Cocks, & I. R. Plimer (Eds.), Encyclopedia of Geolgoy (Vol. 1, pp. 1–12). Elsevier.

Kubota, M., Fudagawa, N., & Kawase, A. (1989). Monoxide Ion Signals in Inductively Coupled Plasma Mass Spectrometry. Analytical Scinences, 5, 701–706.

Kuhn, H.-R., & Günther, D. (2004). Laser ablation-ICP-MS: particle size dependent elemental composition studies on filter-collected and online measured aerosols from glass. Journal of Analytical Atomic Spectrometry, 19(9), 1158–1164. https://doi.org/10.1039/B404729J

Kusiak, M. A., Kędzior, A., Paszkowski, M., Suzuki, K., González-Álvarez, I., Wajsprych, B., & Doktor, M. (2006). Provenance implications of Th-U-Pb electron microprobe ages from detrital monazite in the Carboniferous Upper Silesia Coal Basin, Poland. Lithos, 88(1–4), 56–71. https://doi.org/10.1016/j.lithos.2005.08.004

Kusiak, M. A., Williams, I. S., Dunkley, D. J., Konečný, P., Slaby, E., & Martin, H. (2014). Monazite to the rescue: U–Th–Pb dating of the intrusive history of the composite Karkonosze pluton, Bohemian Massif. Chemical Geology, 364, 76–92.

Küster, D., Liégeois, J.-P., Matukov, D., Sergeev, S., & Lucassen, F. (2008). Zircon geochronology and Sr, Nd, Pb isotope geochemistry of granitoids from Bayuda Desert and Sabaloka (Sudan): Evidence for a Bayudian event (920–900Ma) preceding the Pan-African orogenic cycle (860– 590Ma) at the eastern boundary of the Saharan Metacrato. Precambrian Research, 164(1–2), 16–39. https://doi.org/10.1016/j.precamres.2008.03.003

Large, R. R., Mukherjee, I., Zhukova, I., Corkrey, R., Stepanov, A., & Danyushevsky, L. V. (2018). Role of upper-most crustal composition in the evolution of the Precambrian ocean–atmosphere system. Earth and Planetary Science Letters, 487, 44–53. https://doi.org/10.1016/J.EPSL.2018.01.019

Lee, D. E., & Bastron, H. (1967). Fractionation of rare-earth elements in allanite and monazite as related to geology of the Mt. Wheeler mine area, Nevada. Geochimica et Cosmochimica Acta, 31, 339–356.

Lee, J. K. W., Williams, I. S., & Ellis, D. J. (1997). Pb, U and Th diffusion in natural zircon. Nature, 390, 159. Retrieved from https://doi.org/10.1038/36554

Leggo, P. J. (1974). A geochronological study of the basement complex of Uganda. Journal of the Geological Society, 130, 263–276. https://doi.org/10.1144/gsjgs.130.3.0263

Lichte, F. E., Meier, A. L., & Crock, J. G. (1987). Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry. Analytical Chemistry, 59(8), 1150–1157. https://doi.org/10.1021/ac00135a018

Liégeois, J. P., Bertrand, J. M., & Black, R. (1987). The subduction- and collision-related Pan-African composite batholith of the Adrar des Iforas (Mali): A review. Geological Journal, 22(S2), 185–211. https://doi.org/10.1002/gj.3350220615

Liégeois, J. P., Latouche, L., Boughrara, M., Navez, J., & Guiraud, M. (2003). The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. Journal of African Earth Sciences, 37(3–4), 161–190. https://doi.org/10.1016/j.jafrearsci.2003.05.004

Liégeois, J.-P., Abdelsalam, M. G., Ennih, N., & Ouabadi, A. (2013). Metacraton: Nature, genesis and behavior. Gondwana Research, 23(1), 220–237. https://doi.org/10.1016/J.GR.2012.02.016

Lindner, H., & Bogaerts, A. (2011). Multi-element model for the simulation of inductively coupled plasmas: Effects of helium addition to the central gas stream. Spectrochimica Acta Part B: Atomic Spectroscopy, 66(6), 421–431. https://doi.org/10.1016/j.sab.2011.04.007

Linnen, R. L., Van Lichtervelde, M., & Černý, P. (2012). Granitic Pegmatites as Sources of Strategic Metals. Elements, 8(4), 275 LP-280. Retrieved from http://elements.geoscienceworld.org/content/8/4/275.abstract

Liu, X.-C., Wu, Y.-B., Fisher, C. M., Hanchar, J. M., Beranek, L., Gao, S., & Wang, H. (2017). Tracing crustal evolution by U-Th-Pb, Sm-Nd, and Lu-Hf isotopes in detrital monazite and zircon from modern rivers. Geology, 45(2), 103–106. https://doi.org/10.1130/G38720.1

Lompo, M. (2010). Paleoproterozoic structural evolution of the Man-Leo Shield (West Africa). Key structures for vertical to transcurrent tectonics. Journal of African Earth Sciences, 58(1), 19–36. https://doi.org/10.1016/J.JAFREARSCI.2010.01.005

London, D. (2005). Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos, 80(1–4), 281–303. https://doi.org/10.1016/j.lithos.2004.02.009

Longerich, H. P., Fryer, B. J., Strong, D. F., & Kantipuly, C. J. (1987). Effects of operating conditions on the determination of the rare earth elements by inductively coupled plasma-mass spectrometry (ICP-MS). Spectrochimica Acta Part B: Atomic Spectroscopy, 42(1), 75–92. https://doi.org/10.1016/0584-8547(87)80051-4

Machado, N., & Gauthier, G. (1996). Determination of 207Pb/206Pb ages on zircon and monazite by laser-ablation ICPMS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil. Geochimica et Cosmochimica Acta, 60(24), 5063–5073. https://doi.org/10.1016/S0016-7037(96)00287-6

Mahan, K. H., Gonccalves, P., Williams, M. L., & Jercinovic, M. J. (2006). Dating metamorphic reactions and fluid flow: application to exhumation of high-P granulites in a crustal-scale shear zone, western Canadian Shield. Journal of Metamorphic Geology, 24(3), 193–217. https://doi.org/10.1111/j.1525-1314.2006.00633.x

Makimoto, H., Yamada, N., Mizuno, K., Takada, A., Komazawa, M., & Sudo, S. (2004). Geological map of Japan 1: 200,000, Toyohashi and Irago Misaki. (in Japanese with English Abstract). Geological Survey of Japan.

Manya, S., & Maboko, M. a. H. (2003). Dating basaltic volcanism in the Neoarchaean Sukumaland Greenstone Belt of the Tanzania Craton using the Sm–Nd method: implications for the geological evolution of the Tanzania Craton. Precambrian Research, 121(1–2), 35–45. https://doi.org/10.1016/S0301-9268(02)00195-X

Manya, S., Kobayashi, K., Maboko, M. A. H., & Nakamura, E. (2006). Ion microprobe zircon U–Pb dating of the late Archaean metavolcanics and associated granites of the Musoma-Mara Greenstone Belt, Northeast Tanzania: Implications for the geological evolution of the Tanzania Craton. Journal of African Earth Sciences, 45(3), 355–366. https://doi.org/10.1016/j.jafrearsci.2006.03.004

Maruyama, S., Isozaki, Y., Kimura, G., & Terabayashi, M. (1997). Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. The Island Arc, 6(1), 121– 142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x

Maruyama, S., & Seno, T. (1986). Orogeny and relative plate motions: Example of the Japanese Islands. Tectonophysics, 127(3–4), 305–329. https://doi.org/10.1016/0040-1951(86)90067-3

Massonne, H.-J. (2005). Involvement of Crustal Material in Delamination of the Lithosphere after Continent-Continent Collision. International Geology Review, 47(8), 792–804. https://doi.org/10.2747/0020-6814.47.8.792

Masuda, A., Kawakami, O., Dohmoto, Y., & Takenaka, T. (1987). Lanthanide tetrad effects in nature: two mutually opposite types, W and M. GEOCHEMICAL JOURNAL, 21(3), 119–124. https://doi.org/10.2343/geochemj.21.119

Matsuda, T., & Uyeda, S. (1971). On the pacific-type orogeny and its model — extension of the paired belts concept and possible origin of marginal seas. Tectonophysics, 11(1), 5–27. https://doi.org/10.1016/0040-1951(71)90076-X

McCourt, S., Armstrong, R. A., Grantham, G. H., & Thomas, R. J. (2006). Geology and evolution of the Natal belt, South Africa. Journal of African Earth Sciences, 46(1–2), 71–92. https://doi.org/10.1016/J.JAFREARSCI.2006.01.013

McDonough, W. F., & Sun, S. -s. (1995). The composition of the Earth. Chemical Geology, 120(3– 4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4

Mcfarlane, C. R. M., & Mcculloch, M. T. (2007). Coupling of in-situ Sm–Nd systematics and U–Pb dating of monazite and allanite with applications to crustal evolution studies. Chemical Geology, 245(1–2), 45–60. https://doi.org/10.1016/j.chemgeo.2007.07.020

McFarlane, C. R. M., & Mark Harrison, T. (2006). Pb-diffusion in monazite: Constraints from a high-T contact aureole setting. Earth and Planetary Science Letters, 250(1–2), 376–384. https://doi.org/10.1016/J.EPSL.2006.06.050

Meert, J. G. (2003). A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics, 362(1–4), 1–40. https://doi.org/10.1016/S0040-1951(02)00629-7

Meert, J. G., & Lieberman, B. S. (2008). The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation. Gondwana Research, 14(1–2), 5–21. https://doi.org/10.1016/j.gr.2007.06.007

Meinhold, G., Morton, A. C., & Avigad, D. (2013). New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U–Pb ages. Gondwana Research, 23(2), 661–665. https://doi.org/10.1016/j.gr.2012.05.003

Meldrum, A., Boatner, L. A., Weber, W. J., & Ewing, R. C. (1998). Radiation damage in zircon and monazite. Geochimica et Cosmochimica Acta, 62(14), 2509–2520. https://doi.org/10.1016/S0016-7037(98)00174-4

Meldrum, A., Boatner, L. A., Weber, W. J., & Ewing, R. C. (1998). Radiation damage in zircon and monazite. Geochimica et Cosmochimica Acta, 62(14), 2509–2520. https://doi.org/10.1016/S0016-7037(98)00174-4

Miller, C. F., McDowell, S. M., & Mapes, R. W. (2003). Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6), 529–532. Retrieved from http://dx.doi.org/10.1130/0091-7613(2003)031%3C0529:HACGIO%3E2.0.CO

Mittlefehldt, D. W., & Miller, C. F. (1983). Geochemistry of the Sweetwater Wash Pluton, California: Implications for “anomalous” trace element behavior during differentiation of felsic magmas. Geochimica et Cosmochimica Acta, 47(1), 109–124. https://doi.org/10.1016/0016-7037(83)90095-9

Miyake, A., Hirukawa, T., Sato, M., Taguchi, T., Suzuki, K., & Nakai, Y. (2016). Large thermal aureole around the Inagawa Granodiorite in the southeastern area of Asuke, Aichi Prefecture. Journal of the Geological Society of Japan, 122, 173–191 (in Japanese with English abstract).

Miyake, A., Igarashi, Y., Inaishi, T., & Taguchi, T. (2017). Finding of staurolite-bearing pelitic schists in the Ryoke metamorphic belt of the Dando-san area, Aichi Prefecture and its significance. Journal of the Geological Society of Japan, 123, 59–72 (in Japanese with English abstract).

Miyake, A., Murata, E., & Morishita, O. (1992). Growth stages of andalusite in the Ryoke metamorphic rocks from the Nukata area, Aichi Prefecture. Journal of Mineralogy Petrol- Ogy and Economic Geology, 87, 475–480 (in Japanese with English abstract).

Miyake, A., Yokoe, K., Suzuki, B., & Igarashi, Y. (2014). The thermal structures in the Ryoke metamorphic belt of the Dando-san area, Aichi Prefecture. Journal of Geological Society of Japan, 120, 299–312 (in Japanese with English abstract).

Miyashiro, A., Aki, K., & Şengör, A. M. C. (1982). Orogeny. John Wiley & Sons Inc.

Miyazaki, K. (2010). Development of migmatites and the role of viscous segregation in high-T metamorphic complexes: Example from the Ryoke Metamorphic Complex, Mikawa Plateau, Central Japan. Lithos, 116(3–4), 287–299. https://doi.org/10.1016/J.LITHOS.2009.11.012

Moecher, D., Hietpas, J., Samson, S., & Chakraborty, S. (2011). Insights into southern Appalachian tectonics from ages of detrital monazite and zircon in modern alluvium. Geosphere, 7(2), 494–512. https://doi.org/10.1130/GES00615.1

Monié, P., Bosch, D., Bruguier, O., Vauchez, A., Rolland, Y., Nsungani, P., & Buta Neto, A. (2012). The Late Neoproterozoic/Early Palaeozoic evolution of the West Congo Belt of NW Angola: geochronological (U-Pb and Ar-Ar) and petrostructural constraints. Terra Nova, 24(3), 238–247. https://doi.org/10.1111/j.1365-3121.2012.01060.x

Montel Jean-Marc and Vielzeuf, D. (1997). Partial melting of metagreywackes, Part II. Compositions of minerals and melts. Contributions to Mineralogy and Petrology, 128(2), 176–196. https://doi.org/10.1007/s004100050302

Montel, J. M., Foret, S., Veschambre, M., Nicollet, C., & Provost, A. (1996). Electron microprobe dating of monazite. Chemical Geology, 131(1–4), 37–53. https://doi.org/10.1016/0009-2541(96)00024-1

Montel, J.-M. (1993). A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chemical Geology, 110(1–3), 127–146. https://doi.org/10.1016/0009-2541(93)90250-M

Mottram, C. M., Warren, C. J., Regis, D., Roberts, N. M. W., Harris, N. B. W., Argles, T. W., & Parrish, R. R. (2014). Developing an inverted barrovian sequence; insights from monazite petrochronology. Earth and Planetary Science Letters, 403, 418–431. https://doi.org/10.1016/j.epsl.2014.07.006

Nakai, Y. (1982). The Busetsu granite in the Ryoke belt, Central Japan. In Geological Society of Japan The 89th Annual Meeting (p. 404 (in Japanese)).

Nakai, Y., & Suzuki, K. (2003). Post-tectonic two-mica granite in the Okazaki area, central Japan: a field guide for the 2003 Hutton Symposium. In Hutton Symposium, V, Field Guidebook (pp. 115–124). Geological Survey of Japan.

Nakajima, T., Kamiyama, H., Williams, I. S., & Tani, K. (2004). Mafic rocks from the Ryoke Belt, southwest Japan: implications for Cretaceous Ryoke/San-yo granitic magma genesis. Transactions of the Royal Society of Edinburgh: Earth Sciences, 95(1–2), 249–263. https://doi.org/10.1017/S026359330000105X

Nandedkar, R. H., Ulmer, P., & Müntener, O. (2014). Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contributions to Mineralogy and Petrology, 167(6), 1015. https://doi.org/10.1007/s00410-014-1015-5

Nasdala, L., Hanchar, J. M., Rhede, D., Kennedy, A. K., & Váczi, T. (2010). Retention of uranium in complexly altered zircon: An example from Bancroft, Ontario. Chemical Geology, 269(3–4), 290–300. https://doi.org/10.1016/J.CHEMGEO.2009.10.004

Newman, K., Freedman, P. A., Williams, J., Belshaw, N. S., & Halliday, A. N. (2009). High sensitivity skimmers and non-linear mass dependent fractionation in ICP-MS. Journal of Analytical Atomic Spectrometry, 24(6), 742–751. https://doi.org/10.1039/b819065h

Newman, K. (2012). Effects of the sampling interface in MC-ICP-MS : Relative elemental sensitivities and non-linear mass dependent fractionation of Nd isotopes. Journal of Analytical Atomic Spectrometry, 27, 63–70. https://doi.org/10.1039/c1ja10222b

Ni, Y., Hughes, J. M., & Mariano, A. N. (1995). Crystal chemistry of the monazite and xenotime structures. American Mineralogist, 80, 21–26. https://doi.org/10.2138/am-1995-1-203

Niu, H., & Houk, R. S. (1996). Fundamental aspects of ion extraction in inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 51(8), 779–815. https://doi.org/10.1016/0584-8547(96)01506-6

O’Nions, R. K., Hamilton, P. J., & Evensen, N. M. (1977). Variations in143Nd/144Nd and87Sr/86Sr ratios in oceanic basalts. Earth and Planetary Science Letters, 34(1), 13–22. https://doi.org/10.1016/0012-821X(77)90100-5

Overstreet, W. C. (1967). The geologic occurrence of monazite (530th ed.). Washington, DC. U.S. Geol. Surv. Prof. Pap.

Owona, S., Tichomirowa, M., Ratschbacher, L., Ondoa, J. M., Youmen, D., Pfänder, J., … Ekodeck, G. E. (2012). New igneous zircon Pb/Pb and metamorphic Rb/Sr ages in the Yaounde Group (Cameroon, Central Africa): implications for the Central African fold belt evolution close to the Congo Craton. International Journal of Earth Sciences, 101(7), 1689–1703. https://doi.org/10.1007/s00531-012-0751-x

Paquette, J. L., Caby, R., Djouadi, M. T., & Bouchez, J. L. (1998). U-Pb dating of the end of the Pan-African orogeny in the Tuareg shield: The post-collisional syn-shear Tioueine pluton (Western Hoggar, Algeria). Lithos, 45(1–4), 245–253.https://doi.org/10.1016/S0024-4937(98)00034-6

Parra-Avila, L. A., Belousova, E., Fiorentini, M. L., Baratoux, L., Davis, J., Miller, J., & McCuaig, T. C. (2016). Crustal evolution of the Paleoproterozoic Birimian terranes of the Baoulé-Mossi domain, southern West African Craton: U–Pb and Hf-isotope studies of detrital zircons.

Precambrian Research, 274, 25–60. https://doi.org/10.1016/J.PRECAMRES.2015.09.005

Parrish, R. R. (1990). U–Pb dating of monazite and its application to geological problems. Canadian Journal of Earth Sciences, 27(11), 1431–1450. https://doi.org/10.1139/e90-152

Patino-Douce, Alberto, E., & Beard, J. S. (1995). Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar. Journal of Petrology, 36(3), 707–738. Retrieved from http://dx.doi.org/10.1093/petrology/36.3.707

Payne, J. L., Pearson, N. J., Grant, K. J., & Halverson, G. P. (2013). Reassessment of relative oxide formation rates and molecular interferences on in situ lutetium-hafnium analysis with laser ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 28(7), 1068–1079.

https://doi.org/10.1039/C3JA50090J

Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., & Chenery, S. P. (1997). A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Ref e rence Materials. Geostandards Newsletter, 21(06), 115–144.

Philpotts, J. A. (1970). Redox estimation from a calculation of Eu2+ and Eu3+ concentrations in natural phases. Earth and Planetary Science Letters, 9(3), 257–268. https://doi.org/10.1016/0012-821X(70)90036-1

Pin, C., & Poidevin, J. L. (1987). Series of the northern border of the Congo. Precambrian Research, 36, 303–312.

Plank, T., & Langmuir, C. H. (1998). The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3), 325–394. https://doi.org/10.1016/S0009-2541(97)00150-2

Poitrasson, F., Chenery, S., & Shepherd, T. J. (2000). Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: Geochimica et Cosmochimica Acta, 64(19), 3283–3297. https://doi.org/10.1016/S0016-7037(00)00433-6

Porada, H., & Berhorst, V. (2000). Towards a new understanding of the Neoproterozoic-Early Palaeozoic Lufilian and northern Zambezi Belts in Zambia and the Democratic Republic of Congo. Journal of African Earth Sciences, 30(3), 727–771.

Potrel, A., Peucat, J. J., Fanning, C. M., Auvray, B., Burg, J. P., & Caruba, C. (1996). 3.5 Ga old terranes in the West African Craton, Mauritania. Journal of the Geological Society, 153(4), 507–510. https://doi.org/10.1144/gsjgs.153.4.0507

Poujol, M., Robb, L. J., Anhaeusser, C. R., & Gericke, B. (2003). A review of the geochronological constraints on the evolution of the Kaapvaal Craton, South Africa. Precambrian Research, 127(1–3), 181–213. https://doi.org/10.1016/S0301-9268(03)00187-6

Poussel, E., Mermet, J. M., & Deruaz, D. (1994). Dissociation of Analyte Oxide Ions in Inductively-Coupled Plasma-Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 9(2), 61–66.

Pyle, J. M., & Spear, F. S. (2003). Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire. American Mineralogist, 88(2–3), 338–351. Retrieved from http://dx.doi.org/10.2138/am-2003-2-311

Pyle, J. M., Spear, F. S., Wark, D. A., Daniel, C. G., & Storm, L. C. (2005). Contributions to precision and accuracy of monazite microprobe ages. American Mineralogist, 90(4), 547–577. https://doi.org/10.2138/am.2005.1340

Ramos, F. C., Wolff, J. A., & Tollstrup, D. L. (2004). Measuring 87Sr/86Sr variations in minerals and groundmass from basalts using LA-MC-ICPMS. Chemical Geology, 211(1–2), 135–158. https://doi.org/10.1016/J.CHEMGEO.2004.06.025

Rapp, R. P., Ryerson, F. J., Miller, C. F., & Hanson, E. S. C. (1987). Robert P. Rapp, 1 F. J. Ryerson, 2 and Calvin F. Miller3. Geophysical Research Letters, 14(3), 307–310.

Rapp, R. P., Watson, E. B., & Miller, C. F. (1991). Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51(1), 1–25. https://doi.org/10.1016/0301-9268(91)90092-O

Rasmussen, B. (2005). Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology. Earth-Science Reviews, 68(3–4), 197–243. https://doi.org/10.1016/j.earscirev.2004.05.004

Rasmussen, B., Fletcher, I. R., & McNaughton, N. J. (2001). Dating low-grade metamorphic events by SHRIMP U-Pb analysis of monazite in shales. Geology, 29(10), 963. https://doi.org/10.1130/0091-7613(2001)029<0963:DLGMEB>2.0.CO;2

Rasmussen, B., Fletcher, I. R., & Muhling, J. R. (2007). In situ U–Pb dating and element mapping of three generations of monazite: Unravelling cryptic tectonothermal events in low-grade terranes. Geochimica et Cosmochimica Acta, 71(3), 670–690. https://doi.org/10.1016/J.GCA.2006.10.020

Rasmussen, B., & Muhling, J. R. (2007). Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism. Contributions to Mineralogy and Petrology, 154(6), 675–689.https://doi.org/10.1007/s00410-007-0216-6

Rasmussen, B., & Muhling, J. R. (2009). Reactions destroying detrital monazite in greenschist-facies sandstones from the Witwatersrand basin, South Africa. Chemical Geology, 264(1–4), 311–327.https://doi.org/10.1016/j.chemgeo.2009.03.017

Raut, N. M., Huang, L.-S., Aggarwal, S. K., & Lin, K.-C. (2003). Determination of lanthanides in rock samples by inductively coupled plasma mass spectrometry using thorium as oxide and hydroxide correction standard. Spectrochimica Acta Part B: Atomic Spectroscopy, 58(5), 809–822. https://doi.org/10.1016/S0584-8547(03)00016-8

Rino, S., Kon, Y., Sato, W., & Zhao, D. (2008). The Grenvillian and Pan-African orogens: World’s largest orogenies through geologic time, and their implications on the origin of superplume. Gondwana Research, 14(1–2), 51–72. https://doi.org/10.1016/J.GR.2008.01.001

Rino, S., Komiya, T., Windley, B. F., Katayama, I., Motoki, A., & Hirata, T. (2004). Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Physics of the Earth and Planetary Interiors, 146(1–2), 369–394. https://doi.org/10.1016/j.pepi.2003.09.024

Robb, L. J., Armstrong, R. A., & Waters, D. J. (1999). The History of Granulite-Facies Metamorphism and Crustal Growth from Single Zircon U–Pb Geochronology: Namaqualand, South Africa. Journal of Petrology, 40(12), 1747–1770. https://doi.org/10.1093/petroj/40.12.1747

Roberts, R. J., Corfu, F., Torsvik, T. H., Hetherington, C. J., & Ashwal, L. D. (2010). Age of alkaline rocks in the Seiland Igneous Province, Northern Norway. Journal of the Geological Society, 167(1), 71–81. Retrieved from http://dx.doi.org/10.1144/0016-76492009-014

Romero, X., Poussel, E., & Mermet, J. M. (1997). Influence of the operating conditions on the efficiency of internal standardization in inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 52(4), 487–493. https://doi.org/10.1016/S0584-8547(96)01600-X

Ross, G. M., Parrish, R. R., & Dudás, F. O. (1991). Provenance of the Bonner Formation (Belt Supergroup), Montana: Insights from U-Pb and Sm-Nd analyses of detrital minerals. Geology, 19(4), 340–343. Retrieved from http://dx.doi.org/10.1130/0091-7613(1991)019%3C0340:POTBFB%3E2.3.CO

Rubatto, D. (2002). Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology, 184(1–2), 123–138. https://doi.org/10.1016/S0009-2541(01)00355-2

Rubatto, D., Hermann, J., & Buick, I. S. (2006). Temperature and Bulk Composition Control on the Growth of Monazite and Zircon During Low-pressure Anatexis (Mount Stafford, Central Australia). Journal of Petrology, 47(10), 1973–1996. https://doi.org/10.1093/petrology/egl033

Rubatto, D., Williams, I. S., & Buick, I. S. (2001). Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contributions to Mineralogy and Petrology, 140(4), 458–468. https://doi.org/10.1007/PL00007673

Rudnick, R. L. (1995). Making continental crust. Nature, 378(6557), 571.

Rudnick, R. L., & Fountain, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33(3), 267–309.

Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. Treatise on Geochemistry, 3, 1–64. Retrieved from http://adsabs.harvard.edu/abs/2003TrGeo...3....1R_Ü

Russo, R. E., Mao, X., Gonzalez, J. J., Zorba, V., & Yoo, J. (2013). Laser ablation in analytical chemistry. Analytical Chemistry, 85(13), 6162–6177. https://doi.org/10.1021/ac4005327

Russo, R. E., Mao, X., Liu, H., Gonzalez, J., & Mao, S. S. (2002). Laser ablation in analytical chemistry—a review. Talanta, 57(3), 425–451. https://doi.org/10.1016/S0039-9140(02)00053-X

Ryoke Research Group. (1972). The mutual relations of the granitic rocks of the Ryoke metamorphic belt in central Japan. Earth Science (Chikyu Kagaku), 26, 205–216 (in Japanese with English abstract).

Sacks, P. E., & Secor, D. T. (1990). Delamination in collisional orogens. Geology, 18(10), 999–1002. https://doi.org/10.1130/0091-7613(1990)018<0999:DICO>2.3.CO;2

Santosh, M., Maruyama, S., Komiya, T., & Yamamoto, S. (2010). Orogens in the evolving Earth: from surface continents to ‘lost continents’ at the core–mantle boundary. Geological Society, London, Special Publications, 338(1), 77-116. https://doi.org/10.1144/SP338.5

Schaltegger, U., Fanning, C. M., Günther, D., Maurin, J. C., Schulmann, K., & Gebauer, D. (1999). Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology, 134(2), 186–201. https://doi.org/10.1007/s004100050478

Schmitz, M. D., & Bowring, S. A. (2004). Lower crustal granulite formation during MesoproterozoicNamaqua-Natal collisional orogenesis , southern Africa. South African Journal of Geology, 107,261–284.

Schnetzler, C. C., & Philpotts, J. A. (1970). Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts—II. Geochimica et Cosmochimica Acta, 34(3), 331–340. https://doi.org/10.1016/0016-7037(70)90110-9

Seno, T., & Maruyama, S. (1984). Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics, 102(1–4), 53–84. https://doi.org/10.1016/0040-1951(84)90008-8 Seydoux-Guillaume, A.-M., Paquette, J.-L., Wiedenbeck, M., Montel, J.-M., & Heinrich, W. (2002). Experimental resetting of the U–Th–Pb systems in monazite. Chemical Geology, 191(1), 165–

181. https://doi.org/10.1016/S0009-2541(02)00155-9

Seydoux-Guillaume, A.-M., Wirth, R., & Ingrin, J. (2007). Contrasting response of ThSiO4 and monazite to natural irradiation. European Journal of Mineralogy, 19(1), 7–14. Retrieved from http://dx.doi.org/10.1127/0935-1221/2007/0019-007

Shang, C. K., Satir, M., Morteani, G., & Taubald, H. (2010). Zircon and titanite age evidence for coeval granitization and migmatization of the early Middle and early Late Proterozoic Saharan Metacraton; example from the central North Sudan basement. Journal of African Earth Sciences, 57(5), 492–524. https://doi.org/10.1016/J.JAFREARSCI.2009.12.006

Shang, C. K., Satir, M., Siebel, W., Nsifa, E. N., Taubald, H., Liégeois, J. P., & Tchoua, F. M. (2004). TTG magmatism in the Congo craton; a view from major and trace element geochemistry, Rb–Sr and Sm–Nd systematics: case of the Sangmelima region, Ntem complex, southern Cameroon. Journal of African Earth Sciences, 40(1–2), 61–79. https://doi.org/10.1016/J.JAFREARSCI.2004.07.005

Shibata, K., & Ishihara, S. (1979). Rb-Sr whole-rock and K-Ar mineral ages of granitic rocksin Japan. Geochemical Journal, 13, 113–119.

Shibata, K., & Ishihara, S. (1979). Initial 87Sr/86Sr ratios of plutonic rocks from Japan. Contributions to Mineralogy and Petrology, 70(4), 381–390. https://doi.org/10.1007/BF00371045

Shibata, K., & Tanaka, T. (1987). Age of formation for the Ishikawa composite mass, Abukuma mountains, inferred from Nd and Sr isotopic systematics. Journal of the Japanese Association of Mineralogists Petrologists and Economic Geologists, 82, 433–440.

Shibata, N., Fudagawa, N., & Kubota, M. (1993). Oxide formation in electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 48(9), 1127–1137. https://doi.org/10.1016/0584-8547(93)80103-2

Shore, M., & Fowler, A. D. (1996). Oscillatory zoning in minerals: A common phenomenon. Canadian Mineralogist, 34(6), 1111–1126.

Simonetti, A., Heaman, L. M., Chacko, T., & Banerjee, N. R. (2006). In situ petrographic thin section U–Pb dating of zircon, monazite, and titanite using laser ablation–MC–ICP-MS. International Journal of Mass Spectrometry, 253(1–2), 87–97. https://doi.org/10.1016/j.ijms.2006.03.003

Singletary, S. J., Hanson, R. E., Martin, M. W., Crowley, J. L., Bowring, S. A., Key, R. M., … Krol, M. A. (2003). Geochronology of basement rocks in the Kalahari Desert, Botswana, and implications for regional Proterozoic tectonics. Precambrian Research, 121(1–2), 47–71. https://doi.org/10.1016/S0301-9268(02)00201-2

Sommer, H., Kröner, A., Hauzenberger, C., Muhongo, S., & Wingate, M. T. D. (2003). Metamorphic petrology and zircon geochronology of high-grade rocks from the central Mozambique Belt of Tanzania : crustal recycling of Archean and Palaeoproterozoic material during the Pan-African orogeny. Journal of Metamorphic Geology, 21, 915–934. https://doi.org/10.1046/j.1525-1314.2003.00491.x

Spandler, C., Hermann, J., Arculus, R., & Mavrogenes, J. (2003). Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes. Contributions to Mineralogy and Petrology, 146(2), 205–222. https://doi.org/10.1007/s00410-003-0495-5

Spear, F. S., & Pyle, J. M. (2002). Apatite, Monazite, and Xenotime in Metamorphic Rocks. Reviews in Mineralogy and Geochemistry, 48(1), 293-335. Retrieved from http://rimg.geoscienceworld.org/content/48/1/293.abstract

Spear, F. S., & Pyle, J. M. (2010). Theoretical modeling of monazite growth in a low-Ca metapelite. Chemical Geology, 273(1-2), 111-119.

Spencer, C. J., Roberts, N. M. W., & Santosh, M. (2017). Growth, destruction, and preservation of Earth’s continental crust. Earth-Science Reviews, 172, 87–106. https://doi.org/10.1016/J.EARSCIREV.2017.07.013

Spencer, C. J., Cawood, P. A., Hawkesworth, C. J., Prave, A. R., Roberts, N. M. W., Horstwood, M. S. A., & Whitehouse, M. J. (2015). Generation and preservation of continental crust in the Grenville Orogeny. Geoscience Frontiers, 6(3), 357–372. https://doi.org/10.1016/J.GSF.2014.12.001

Stepanov, A. S., Hermann, J., Rubatto, D., & Rapp, R. P. (2012). Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chemical Geology, 300–301, 200–220. https://doi.org/10.1016/j.chemgeo.2012.01.007

Stern, C. R., & Wyllie, P. J. (1981). Phase Relationships of I-type Granite With H2O to 35 Kilobars: The Dinkey Lakes Biotite-Granite From the Sierra Nevasa Batholith. Journal of Geophisical Research, 86, 10412–10422.

Stern, R. A., & Berman, R. G. (2001). Monazite U–Pb and Th–Pb geochronology by ion microprobe, with an application to in situ dating of an Archean metasedimentary rock. Chemical Geology, 172(1–2), 113–130. https://doi.org/10.1016/S0009-2541(00)00239-4

Stern, R. J. (1994). Arc assembly and continental collision in the Neoproterozoic East African Orogen; Implications for the Consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences, 22, 319–351.

Štípská, P., Hacker, B. R., Racek, M., Holder, R., Kylander-Clark, A. R. C., Schulmann, K., & Hasalová, P. (2015). Monazite Dating of Prograde and Retrograde P-T-d paths in the Barrovian terrane of the Thaya window, Bohemian Massif. Journal of Petrology, 56(5), 1007–1035. https://doi.org/10.1093/petrology/egv026

Suzuki, K., Morishita, T., Kajizuka, I., Nakai, Y., Adachi, M., & Shibata, K. (1994). CHIME ages of monazites from the Ryoke metamorphic rocks and some granitoids in the Mikawa-Tono area, central Japan. Bulletin of the Nagoya University Furukawa Museum, 10, 7–38 (in Japanese with English abstract).

Suzuki, K., & Adachi, M. (1998). Denudation history of the high T/P Ryoke metamorphic belt, southwest Japan: constraints from CHIME monazite ages of gneisses and granitoids. Journal of metamorphic geology, 16(1), 23–37. https://doi.org/10.1111/j.1525-1314.1998.00057.x

Suzuki, K., & Adachi, M. (1991). Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the Th-U-total Pb chemical isochron ages of monazite, zircon and xenotime. Geochmical Journal, 25, 357–376.

Suzuki, K., Adachi, M., & Yamamoto, K. (1990). Possible effects of grain-boundary REE on the REE distribution in felsic melts derived by partial melting. GEOCHEMICAL JOURNAL, 24(2), 57–74. https://doi.org/10.2343/geochemj.24.57

Suzuki, K., Adachi, M., Yamamoto, K., & Nakai, Y. (1992). Intra-grain distribution of REE and crystallization sequence of accessory minerals in the Cretaceous Busetsu Granite at Okazaki, central Japan. GEOCHEMICAL JOURNAL, 26, 383–394.

Suzuki, K., & Kato, T. (2008). CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possibly discordant age data. Gondwana Research, 14(4), 569–586.

Tack, L., Wingate, M. T. ., Liégeois, J.-P., Fernandez-Alonso, M., & Deblond, A. (2001). Early Neoproterozoic magmatism (1000–910 Ma) of the Zadinian and Mayumbian Groups (Bas-Congo): onset of Rodinia rifting at the western edge of the Congo craton. Precambrian Research, 110(1–4), 277–306. https://doi.org/10.1016/S0301-9268(01)00192-9

Tack, L., Wingate, M. T. D., De Waele, B., Meert, J., Belousova, E., Griffin, B., … Fernandez-Alonso, M. (2010). The 1375 Ma “Kibaran event” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime. Precambrian Research, 180(1–2), 63–84. https://doi.org/10.1016/j.precamres.2010.02.022

Taira, A. (2001). Tectonic evolution of the Japanese island arc system. Annual Review of Earth and Planetary Sciences, 29(1), 109–134.

Taira, A., Saito, S., Aoike, K. A. N., Morita, S., Tokuyama, H., Suyehiro, K., … Klaus, A. (1998). Nature and growth rate of the Northern Izu–Bonin (Ogasawara) arc crust and their implications for continental crust formation. Island Arc, 7(3), 395–407.

Tajika, E., & Matsui, T. (1992). Evolution of terrestrial proto-CO2 atmosphere coupled with thermal history of the earth. Earth and Planetary Science Letters, 113(1–2), 251–266. https://doi.org/10.1016/0012-821X(92)90223-I

Takagi, T. (2004). Origin of magnetite- and ilmenite-series granitic rocks in the Japan Arc. American Journal of Science, 304(2), 169–202. https://doi.org/10.2475/ajs.304.2.169

Takahashi, T., Hirahara, Y., Miyazaki, T., Vaglarov, B. S., Chang, Q., Kimura, J., & Tatsumi, Y. (2009). Precise determination of Sr isotope ratios in igneous rock samples and application to micro-analysis of plagioclase phenocrysts. JAMSTEC Report of Research and Development, 2009, 59–64. https://doi.org/10.5918/jamstecr.2009.59

Takatsuka, K., Kawakami, T., Skrzypek, E., Sakata, S., Obayashi, H., & Hirata, T. (2018). Spatiotemporal evolution of magmatic pulses and regional metamorphism during a Cretaceous flare-up event: Constraints from the Ryoke belt (Mikawa area, central Japan). Lithos, 308–309, 428–445. https://doi.org/10.1016/J.LITHOS.2018.03.018

Tanaka, H. (1977). Petrochemistry of some Mesozoic granitic rocks in the northern Abukuma Mountains. J. Japan. Assoc. Min. Petlr. Econ. Geol., 72, 373–382.

Tatsumi, Y., Takahashi, T., Hirahara, Y., Chang, Q., Miyazaki, T., Kimura, J.-I., … Sakayori, A. (2008). New Insights into Andesite Genesis: the Role of Mantle-derived Calc-alkalic and Crust-derived Tholeiitic Melts in Magma Differentiation beneath Zao Volcano, NE Japan. Journal of Petrology, 49(11), 1971–2008. Retrieved from http://dx.doi.org/10.1093/petrology/egn055

Taylor, S. R., & McLennan, S. M. (1996). The evolution of continental crust. Scientific American, 274(1), 76–81.

Tchameni, R., Mezger, K., Nsifa, N. E., & Pouclet, A. (2000). Neoarchaean crustal evolution in the Congo Craton: evidence from K rich granitoids of the Ntem Complex, southern Cameroon. Journal of African Earth Sciences, 30(1), 133–147.

Terakado, Y., & Nohda, S. (1993). Rb–Sr dating of acidic rocks from the middle part of the Inner Zone of southwest Japan: tectonic implications for the migration of the Cretaceous to Paleogene igneous activity. Chemical Geology, 109(1), 69–87. https://doi.org/10.1016/0009-2541(93)90062-N

Thomas, R. J., Agenbacht, A. L. D., Cornell, D. H., & Moore, J. M. (1994). The Kibaran of southern Africa: Tectonic evolution and metallogeny. Ore Geology Reviews, 9(2), 131–160. https://doi.org/10.1016/0169-1368(94)90025-6

Thomas, R. J., Jacobs, J., Horstwood, M. S. A., Ueda, K., Bingen, B., & Matola, R. (2010). The Mecubúri and Alto Benfica Groups, NE Mozambique: Aids to unravelling ca. 1 and 0.5Ga events in the East African Orogen. Precambrian Research, 178(1–4), 72–90. https://doi.org/10.1016/j.precamres.2010.01.010

Tomascak, P. B., Krogstad, E. J., & Walker, R. J. (1998). Sm-Nd isotope systematics and the derivation of granitic pegmatites in southwestern Maine. The Canadian Mineralogist, 36(2), 327 LP-337. Retrieved from http://www.canmin.org/content/36/2/327.abstract

Toteu, S. F., Penaye, J., & Djomani, Y. P. (2004). Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences, 41(1), 73–85. https://doi.org/10.1139/e03-079

Townsend, K. . J., Miller, C. . F., D’Andrea, J. . L., Ayers, J. . C., Harrison, T. M., & Coath, C. D. (2000). Low temperature replacement of monazite in the Ireteba granite , Southern Nevada : geochronological implications. Chemical Geology, 172(1–2), 95–112. https://doi.org/10.1016/S0009-2541(00)00238-2

Ueda, K., Jacobs, J., Thomas, R. J., Kosler, J., Jourdan, F., & Matola, R. (2012). Delamination-induced late-tectonic deformation and high-grade metamorphism of the Proterozoic Nampula Complex, northern Mozambique. Precambrian Research, 196–197, 275– 294. https://doi.org/10.1016/j.precamres.2011.05.012

Ueda, K., Jacobs, J., Thomas, R. J., Kosler, J., Horstwood, M. S. A., Wartho, J.-A., … Matola, R. (2012). Postcollisional High-Grade Metamorphism, Orogenic Collapse, and Differential Cooling of the East African Orogen of Northeast Mozambique. The Journal of Geology, 120(5), 507–530. https://doi.org/10.1086/666876

Valley, J. W., Chiarenzelli, J. R., & McLelland, J. M. (1994). Oxygen isotope geochemistry of zircon. Earth and Planetary Science Letters, 126(4), 187–206. https://doi.org/10.1016/0012-821X(94)90106-6

van Schijndel, V., Cornell, D. H., Frei, D., Simonsen, S. L., & Whitehouse, M. J. (2014). Crustal evolution of the Rehoboth Province from Archaean to Mesoproterozoic times: Insights from the Rehoboth Basement Inlier. Precambrian Research, 240, 22–36. https://doi.org/10.1016/J.PRECAMRES.2013.10.014

van Schmus, W. R., Oliveira, E. P., da Silva Filho, a. F., Toteu, S. F., Penaye, J., & Guimaraes, I. P. (2008). Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. Geological Society, London, Special Publications, 294(1), 69–99. https://doi.org/10.1144/SP294.5

Vaughan, M. A., & Horlick, G. (1990). Effect of sampler and skimmer orifice size on analyte and analyte oxide signals in inductively coupled plasma-mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 45(12), 1289–1299. https://doi.org/10.1016/0584-8547(90)80183-J

Veizer, J., & Jansen, S. L. (1979). Basement and sedimentary recycling and continental evolution. The Journal of Geology, 87(4), 341–370. Retrieved from

Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493. https://doi.org/10.1016/J.GSF.2018.04.001

Viola, G., Henderson, I. H. C., Bingen, B., Thomas, R. J., Smethurst, M. A., & de Azavedo, S. (2008). Growth and collapse of a deeply eroded orogen: Insights from structural, geophysical, and geochronological constraints on the Pan-African evolution of NE Mozambique. Tectonics, 27(5). https://doi.org/10.1029/2008TC002284

Vry, J., Compston, W., & Cartwright, I. (1996). SHRIMP II dating of zircons and monazites: reassessing the timing of high-grade metamorphism and fluid flow in the Reynolds Range, northern Arunta Block, Australia. Journal of Metamorphic Geology, 14(3), 335–350. https://doi.org/10.1111/j.1525-1314.1996.00335.x

Walraven, F., & Rumvegeri, B. T. (1993). Implications of whole-rock PbPb and zircon evaporation dates for the early metamorphic history of the Kasaï craton, Southern Zaïre. Journal of African Earth Sciences (and the Middle East), 16(4), 395–404. https://doi.org/10.1016/0899-5362(93)90098-B

Wark, D. A., & Miller, C. F. (1993). Accessory mineral behavior during differentiation of a granite suite : monazite, xenotime and zircon in the Sweetwater Wash pluton, southeasyern California, U.S.A. Chemical Geology, 110(1–3), 49–67. https://doi.org/10.1016/0009-2541(93)90247-G

Watt, G. R., & Harley, S. L. (1993). Accessory phase controls on the geochemistry of crustal melts and restites produced during water-undersaturated partial melting. Contributions to Mineralogy and Petrology, 114(4), 550–566. https://doi.org/10.1007/BF00321759

Wendlandt, R. F., & Harrison, W. J. (1979). Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapor: Results and implications for the formation of light rare earth-enriched rocks. Contributions to Mineralogy and Petrology, 69(4), 409–419. https://doi.org/10.1007/BF00372266

Whalen, J. B., & Chappell, B. W. (1988). Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of the Lachlan fold belt, Southeast Australia. American Mineralogist, 73(3–4), 281 LP-296. Retrieved from http://ammin.geoscienceworld.org/content/73/3-4/281.abstract

Williams, I. S. (1998). U-Th-Pb Geochronology by Ion Microprobe. Reviews in Economical Geology, 7(1991), 1–35.

Williams, I. S. (2001). Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and host‐rock partial melting, Cooma Complex, southeastern Australia. Australian Journal of Earth Sciences, 48(4), 557–580. https://doi.org/10.1046/j.1440-0952.2001.00883.x

Williams, M. L., Jercinovic, M. J., & Hetherington, C. J. (2007). Microprobe Monazite Geochronology: Understanding Geologic Processes by Integrating Composition and Chronology. Annual Review of Earth and Planetary Sciences, 35(1), 137–175. https://doi.org/10.1146/annurev.earth.35.031306.140228

Wing, B. A., Ferry, J. M., & Harrison, T. M. (2003). Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contributions to Mineralogy and Petrology, 145(2), 228–250. https://doi.org/10.1007/s00410-003-0446-1

Witte, T. M., & Houk, R. S. (2012). Origins of polyatomic ions in laser ablation-inductively coupled plasma-mass spectrometry: An examination of metal oxide ions and effects of nitrogen and helium in the aerosol gas flow. Spectrochimica Acta Part B: Atomic Spectroscopy, 69, 9–19. https://doi.org/10.1016/j.sab.2012.02.005

Wu, F.-Y., Yang, Y.-H., Marks, M. A. W., Liu, Z.-C., Zhou, Q., Ge, W.-C., … Markl, G. (2010). In situ U–Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 273(1–2), 8–34. https://doi.org/10.1016/J.CHEMGEO.2010.02.007

Xie, L., Wang, R. C., Wang, D. Z., & Qiu, J. S. (2006). A survey of accessory mineral assemblages in peralkaline and more aluminous A-type granites of the southeast coastal area of China. Mineralogical Magazine, 70(6), 709–729. https://doi.org/10.1180/0026461067060362

Yakushiji, A., Kamei, A., & Shibata, T. (2012). Igneous activity forming hybrid rocks and leucogranites in the Obara area, San’in zone, Southwest Japan. In Annual Meeting of the Geological Society of Japan The 121st Annual Meeting (2014’Kagoshima) (Vol. 118, pp. 20–38). The Geological Society of Japan. https://doi.org/10.5575/geosoc.2011.0021

Yakymchuk, C., & Brown, M. (2014). Behaviour of zircon and monazite during crustal melting. Journal of the Geological Society, 171(4), 465–479. Retrieved from http://dx.doi.org/10.1144/jgs2013-115

Yamasaki, T. (2013). K–Ar ages of the Ryoke plutonic rocks in the Asuke area, Aichi prefecture, central Japan. Journal of the Geological Society of Japan, 119, 421–431 (in Japanese with English abstract).

Yang, Y., Sun, J., Xie, L., Fan, H., & Wu, F. (2008). In situ Nd isotopic measurement of natural geological materials by LA-MC-ICPMS. Chinese Science Bulletin, 53(7), 1062–1070. https://doi.org/10.1007/s11434-008-0166-z

Yokoyama, K., & Zhou, B. (2002). Preliminary Studyof Ages of Monazites in Sands from the Yangtze River. National Science Museum Monographs, 22, 83–88.

Yuhara, M., & Kagami, H. (2012). Geochronological and Rb-Sr and Sm-Nd isotopic study of mafic rocks in the Ryoke Metamorphic Belt of the Mikawa District, Southwest Japan Arc. Fukuoka Univ. Sci. Rep., 42(1), 37–55 (in Japanese with English Abstract).

Yuhara, M., Kagami, H., & Nagao, K. (2000). Geochronological characterization and petrogenesis of granitoids in the Ryoke belt, Southwest Japan Arc: constraints from K–Ar, Rb–Sr and Sm-Nd systematics. Island Arc, 9(1), 64–80. https://doi.org/10.1046/j.1440-1738.2000.00262.x

Yuhara, M., Mizuta, F., Nishi, E., Kiyoura, K., & Teramoto, K. (2014). The field occurrence and chemical compositions of syn-plutonic mafic rocks in the Masaki Granite, northern Kyusyu (p.395).

Yurimoto, H., Duke, E. F., Papike, J. J., & Shearer, C. K. (1990). Are discontinuous chondrite-normalized REE patterns in pegmatitic granite systems the results of monazite fractionation? Geochimica et Cosmochimica Acta, 54(7), 2141–2145. https://doi.org/10.1016/0016-7037(90)90277-R

Zeh, A., Williams, I. S., Brätz, H., & Millar, I. L. (2003). Different age response of zircon and monazite during the tectono-metamorphic evolution of a high grade paragneiss from the Ruhla Crystalline Complex, central Germany. Contributions to Mineralogy and Petrology, 145(6), 691– 706. https://doi.org/10.1007/s00410-003-0462-1

Zeh, A., Wilson, A. H., & Ovtcharova, M. (2016). Source and age of upper Transvaal Supergroup, South Africa: Age-Hf isotope record of zircons in Magaliesberg quartzite and Dullstroom lava, and implications for Paleoproterozoic (2.5–2.0 Ga) continent reconstruction. Precambrian Research, 278, 1–21. https://doi.org/10.1016/J.PRECAMRES.2016.03.017

Zhu, X. K., & O’Nions, R. (1999). Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology: a case study from the Lewisian terrain. Earth and Planetary Science Letters, 171(2), 209–220. https://doi.org/10.1016/S0012-821X(99)00146-6

Zhu, X. K., O’Nions, R. K., Belshaw, N. S., & Gibb, A. J. (1997). Significance of in situ SIMS chronometry of zoned monazite from the Lewisian granulites, northwest Scotland. Chemical Geology, 135(1–2), 35–53. https://doi.org/10.1016/S0009-2541(96)00103-9

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る