リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electrical and Magnetic Properties of Metal Oxyhydride Epitaxial Thin Films」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electrical and Magnetic Properties of Metal Oxyhydride Epitaxial Thin Films

沓澤, 大 東京大学 DOI:10.15083/0002001901

2021.10.04

概要

1. General introduction
Recently, oxyhydrides, in which cations are bonded with both oxide anions (O2− ) and hydride anions (H− ), have attracted much attention due to their intriguing physical properties. For instance, heavy electron doping is achieved by H− substitution for O2− in ATiO3 (A = Ca, Sr, Ba) [1], because H− and O2− have almost the same ionic radius but different charges. An oxygen doped yttrium dihydride, YOxHy, shows photochromic effect at ambient conditions [2], whereas the pure hydride, YH2, exhibits the effect only at high pressure [3]. However, influence of anion composition on the physical properties of oxyhydrides have scarcely been investigated, mainly due to the difficulty in preparing high quality crystals with precisely controlled anion compositions.

In this thesis research, synthesis and investigation of physical properties of single crystalline oxyhydrides, of which anion compositions were precisely controlled in a wide range, were challenged by using epitaxial growth techniques. In the first part of the thesis, influence of epitaxial strain on topotactic hydrogen substitution of perovskite-type titanate was systematically studied, and hydrogen doping in a wider compositional range was realized. In the second part of the thesis, precise oxygen doping into fluorite-type rare-earth deuteride was achieved by simultaneous deuteration and oxidation during a physical vapor deposition of rare-earth metal. Furthermore, influence of anion composition on the physical properties of these oxyhydrides was investigated, leading to findings of novel and/or enhanced functionalities of the oxyhydrides.

2. Strain enhanced topotactic hydrogen substitution and metal to insulator transition in SrTiOxHy
Firstly, an effect of epitaxial strain on topotactic hydrogen substitution in SrTiO3 was systematically studied. SrTiOxHy films were prepared by heating the precursor SrTiO3 with CaH2 reagent as hydrogen source. Figure 1 shows anion compositions of the SrTiOxHy films with various strain (c/a, where c and a are out-of-plane and in-plane lattice constant of the SrTiO3, respectively). Comparing the films heated for 72 h, y was increased from 0.56 (c/a = 1.01) to 0.87 (c/a = 0.986) by applying a tensile strain, while y was suppressed to 0.16 (c/a = 1.02) by applying a compressive strain. In the topotactic hydrogen substitution for oxygen, oxygen diffusion in the films seemed to be a rate-limiting step in terms of an electrostatic interaction. According to recent theoretical studies [4,5], the oxygen diffusion in precursor SrTiO3 is enhanced by a tensile strain, while reduced by a compressive strain. Thus, it is reasonable to speculate that this strain dependent hydrogen content was owing to a difference of the oxygen diffusion in the precursor SrTiO3 thin films.

Figure 2 shows temperature dependent resistivities of the SrTiOxHy films. The films with relatively low hydrogen content (y ≤ 0.40) showed metallic behavior (dρ/dT > 0), same as previous work [1]. On the other hand, the films with larger y showed higher resistivity, and finally behaved as an insulator (dρ/dT < 0) even at 300 K (y = 0.87). This metal to insulator transition can be explained by cooperative effect of electron correlations derived from nearly d 1 configuration due to heavy hydrogen doping and an epitaxial strain which tends to stabilize Mott insulator phase. Thus, heavily hydrogen doped SrTiOxHy was proposed to be a Mott insulator.

3. Widely controllable anion composition in LnOxDy (Ln = Nd and Gd) epitaxial thin films and their modulated magnetic properties
Next, an effect of oxygen doping into fluorite-type LnD2 on its magnetic properties was investigated. Because O 2p orbital is spatially more expanded than D 1s orbital, an additional magnetic interaction between Ln and the O is expected to be strong. Figure 3a shows anion compositions of NdOxDy films. Notably, the anion composition was controlled in a wide range (0.05 ≤ x ≤ 1.4). With increase of the oxygen content x, the deuterium content y tended to decrease. X-ray diffraction measurements revealed that the films with relatively low oxygen contents had a fluorite structure (x ≤ 0.3 in Figure 3b), while the films were mixtures of fluorite and hexagonal phases when x exceeded the solubility limit (x ≥ 0.6 in Figure 3c). The NdOxDy thin films showed ferromagnetic transition at low temperature, similar to the mother hydride, NdH2, as seen from both magnetization curve and anomalous Hall effect. Figure 4 plots the Curie temperature TC derived from the resistivity vs temperature curves against the oxygen content x. The film with the least oxygen content (x = 0.05) showed TC of around 7 K, which was almost identical to that of NdH2 [6]. By introducing oxygen, the transition temperature was enhanced up to 10 K and became constant over the solubility limit. This enhancement of TC is in sharp contrast to excess hydrogen doped NdH2+x, of which Tc decreases by the hydrogen doping.

Similar to the NdOxDy films, the GdOxDy thin films maintained a fluorite structure when the oxygen content x was enough low (x ≤ 0.4). By increasing x, the GdOxDy film became a mixture of fluorite phase and monoclinic phase (x = 0.7), and finally became the pure monoclinic phase (x ≥ 1.1). With increase of the oxygen content, the resistivity increased, and finally insulating behavior (dρ/dT < 0) was observed in the monoclinic film (x = 1.1). The metallic films (dρ/dT > 0) showed abrupt decrease of resistivity at low temperature (Fig. 5, upper), corresponding to magnetic transition (Fig. 5, bottom). Although pure GdH2+x showed antiferromagnetic or helical magnetic order below 20 K [7], the GdO0.1D1.9 film clearly showed magnetic hysteresis at 2 K (inset in Fig. 5). Moreover, the transition temperature depended on the oxygen content and was enhanced up to 57 K (x = 0.2).

4. Conclusion
It was demonstrated that introduction of hydrogen/oxygen into oxide/hydride is a useful approach to modify their physical properties. Firstly, the SrTiOxHy thin films fabricated by the topotactic hydrogen substitution showed clear correlation between the hydrogen content and the lattice strain in the precursor oxides. With increasing the hydrogen content, the insulating oxide turned into a metal followed by insulator again. Secondly, the oxygen doped rare earth dideuterides, LnOxDy (Ln = Nd and Gd), showed tunable magnetic properties, such as magnetic ordering and magnetic transition temperature. The epitaxial growth technique is useful not only for investigating the physical properties but also for precisely controlling the anion composition.

この論文で使われている画像

参考文献

[1] H. Kageyama, K. Hayashi, K. Maeda, J. P. Attfield, Z. Hiroi, J. M. Rondinelli, and K. R. Poeppelmeier, Nat. Commun. 9, 772 (2018).

[2] R. D. Shannon and C. T. Prewitt, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 25, 925 (1969).

[3] R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).

[4] T. Hanna, Y. Muraba, S. Matsuishi, N. Igawa, K. Kodama, S. Shamoto, and H. Hosono, Phys. Rev. B 84, 024521 (2011).

[5] T. Hanna, S. Matsuishi, K. Kodama, T. Otomo, S. Shamoto, and H. Hosono, Phys. Rev. B 87, 020401 (2013).

[6] H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, Nature 453, 376 (2008).

[7] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

[8] F. Denis Romero, A. Leach, J. S. Möller, F. Foronda, S. J. Blundell, and M. A. Hayward, Angew. Chemie Int. Ed. 53, 7556 (2014).

[9] Y. Wei, H. Gui, X. Li, Z. Zhao, Y. Zhao, and W. Xie, J. Phys. Condens. Matter 27, 206001 (2015).

[10] T. Yamamoto, D. Zeng, T. Kawakami, V. Arcisauskaite, K. Yata, M. A. Patino, N. Izumo, J. E. McGrady, H. Kageyama, and M. A. Hayward, Nat. Commun. 8, 1217 (2017).

[11] C. Tassel, Y. Goto, Y. Kuno, J. Hester, M. Green, Y. Kobayashi, and H. Kageyama, Angew. Chemie Int. Ed. 53, 10377 (2014).

[12] I. WEINBERG and P. LARSSEN, Nature 192, 445 (1961).

[13] M. a Hayward, E. J. Cussen, J. B. Claridge, M. Bieringer, M. J. Rosseinsky, C. J. Kiely, S. J. Blundell, I. M. Marshall, and F. L. Pratt, Science 295, 1882 (2002).

[14] K. Liu, Y. Hou, X. Gong, and H. Xiang, Sci. Rep. 6, 19653 (2016).

[15] G. Kobayashi, Y. Hinuma, S. Matsuoka, A. Watanabe, M. Iqbal, M. Hirayama, M. Yonemura, T. Kamiyama, I. Tanaka, and R. Kanno, Science (80-. ). 351, 1314 (2016).

[16] N. Masuda, Y. Kobayashi, O. Hernandez, T. Bataille, S. Paofai, H. Suzuki, C. Ritter, N. Ichijo, Y. Noda, K. Takegoshi, C. Tassel, T. Yamamoto, and H. Kageyama, J. Am. Chem. Soc. 137, 15315 (2015).

[17] T. Yajima, F. Takeiri, K. Aidzu, H. Akamatsu, K. Fujita, W. Yoshimune, M. Ohkura, S. Lei, V. Gopalan, K. Tanaka, C. M. Brown, M. A. Green, T. Yamamoto, Y. Kobayashi, and H. Kageyama, Nat. Chem. 7, 1017 (2015).

[18] Y. Kobayashi, Y. Tang, T. Kageyama, H. Yamashita, N. Masuda, S. Hosokawa, and H. Kageyama, J. Am. Chem. Soc. 139, 18240 (2017).

[19] H. Yamashita, T. Broux, Y. Kobayashi, F. Takeiri, H. Ubukata, A. Kuwabara, T. Murakami, and H. Kageyama, J. Am. Chem. Soc. 140, 11170 (2018).

[20] A. Miniotas, B. Hjörvarsson, L. Douysset, and P. Nostell, Appl. Phys. Lett. 76, 2056 (2000).

[21] T. Mongstad, C. Platzer-Björkman, J. P. Maehlen, L. P. A. Mooij, Y. Pivak, B. Dam, E. S. Marstein, B. C. Hauback, and S. Z. Karazhanov, Sol. Energy Mater. Sol. Cells 95, 3596 (2011).

[22] F. Nafezarefi, H. Schreuders, B. Dam, and S. Cornelius, Appl. Phys. Lett. 111, 103903 (2017).

[23] J. Montero, F. A. Martinsen, M. Lelis, S. Z. Karazhanov, B. C. Hauback, and E. S. Marstein, Sol. Energy Mater. Sol. Cells 177, 106 (2018).

[24] A. Ohmura, A. MacHida, T. Watanuki, K. Aoki, S. Nakano, and K. Takemura, Appl. Phys. Lett. 91, 10 (2007).

[25] J. G. Bednorz and K. A. Müller, Z. Phys. B - Condens. Matter 64, 189 (1986).

[26] H. Takagi, T. Ido, S. Ishibashi, M. Uota, S. Uchida, and Y. Tokura, Phys. Rev. B 40, 2254 (1989).

[27] P. G. Radaelli, J. D. Jorgensen, R. Kleb, B. A. Hunter, F. C. Chou, and D. C. Johnston, Phys. Rev. B 49, 6239 (1994).

[28] C. Zener, Phys. Rev. 82, 403 (1951).

[29] Y. Tokura, A. Urushibara, T. Arima, Y. Moritomo, A. Asamitsu, G. KlDO, and N. Furukawa, J. Phys. Soc. Japan 63, 3931 (1994).

[30] Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, and M. Wakihara, Solid State Commun. 86, 689 (1993).

[31] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

[32] C. A. Bridges, G. R. Darling, M. A. Hayward, and M. J. Rosseinsky, J. Am. Chem. Soc. 127, 5996 (2005).

[33] A. Bowman, J. B. Claridge, and M. J. Rosseinsky, Chem. Mater. 18, 3046 (2006).

[34] R. M. Helps, N. H. Rees, and M. A. Hayward, Inorg. Chem. 49, 11062 (2010).

[35] M. Widerøe, H. Fjellvåg, T. Norby, F. Willy Poulsen, and R. Willestofte Berg, J. Solid State Chem. 184, 1890 (2011).

[36] T. Sakaguchi, Y. Kobayashi, T. Yajima, M. Ohkura, C. Tassel, F. Takeiri, S. Mitsuoka, H. Ohkubo, T. Yamamoto, J. Kim, N. Tsuji, A. Fujihara, Y. Matsushita, J. Hester, M. Avdeev, K. Ohoyama, and H. Kageyama, Inorg. Chem. 51, 11371 (2012).

[37] Y. Kobayashi, O. J. Hernandez, T. Sakaguchi, T. Yajima, T. Roisnel, Y. Tsujimoto, M. Morita, Y. Noda, Y. Mogami, A. Kitada, M. Ohkura, S. Hosokawa, Z. Li, K. Hayashi, Y. Kusano, J. E. Kim, N. Tsuji, A. Fujiwara, Y. Matsushita, K. Yoshimura, K. Takegoshi, M. Inoue, M. Takano, and H. Kageyama, Nat. Mater. 11, 507 (2012).

[38] T. Yamamoto, R. Yoshii, G. Bouilly, Y. Kobayashi, K. Fujita, Y. Kususe, Y. Matsushita, K. Tanaka, and H. Kageyama, Inorg. Chem. 54, 1501 (2015).

[39] O. J. Hernandez, G. Geneste, T. Yajima, Y. Kobayashi, M. Okura, K. Aidzu, C. Tassel, S. Paofai, D. Swain, C. Ritter, and H. Kageyama, Inorg. Chem. 57, 11058 (2018).

[40] T. Pussacq, H. Kabbour, S. Colis, H. Vezin, S. Saitzek, O. Gardoll, C. Tassel, H. Kageyama, C. Laberty Robert, and O. Mentre, Chem. Mater. 29, 1047 (2017).

[41] M. Amano Patino, D. Zeng, S. J. Blundell, J. E. McGrady, and M. A. Hayward, Inorg. Chem. 57, 2890 (2018).

[42] L. Jin, M. Lane, D. Zeng, F. K. K. Kirschner, F. Lang, P. Manuel, S. J. Blundell, J. E. McGrady, and M. A. Hayward, Angew. Chemie 130, 5119 (2018).

[43] F. Takeiri, T. Yajima, T. Yamamoto, Y. Kobayashi, T. Matsui, J. Hester, and H. Kageyama, J. Solid State Chem. 256, 33 (2017).

[44] F. Takeiri, K. Aidzu, T. Yajima, T. Matsui, T. Yamamoto, Y. Kobayashi, J. Hester, and H. Kageyama, Inorg. Chem. 56, 13035 (2017).

[45] Y. Tsujimoto, C. Tassel, N. Hayashi, T. Watanabe, H. Kageyama, K. Yoshimura, M. Takano, M. Ceretti, C. Ritter, and W. Paulus, Nature 450, 1062 (2007).

[46] S. Inoue, M. Kawai, Y. Shimakawa, M. Mizumaki, N. Kawamura, T. Watanabe, Y. Tsujimoto, H. Kageyama, and K. Yoshimura, Appl. Phys. Lett. 92, 161911 (2008).

[47] M. A. Hayward, M. A. Green, M. J. Rosseinsky, and J. Sloan, J. Am. Chem. Soc. 121, 8843 (1999).

[48] M. Kawai, S. Inoue, M. Mizumaki, N. Kawamura, N. Ichikawa, and Y. Shimakawa, Appl. Phys. Lett. 94, 1 (2009).

[49] Y. C. Huang, K. Fujita, and H. Uchida, Bull. Japan Inst. Met. 18, 694 (1979).

[50] P.-V. Ong, L. E. Johnson, H. Hosono, and P. V. Sushko, J. Mater. Chem. A 5, 5550 (2017).

[51] R. Shimizu, Y. Sasahara, H. Oguchi, K. Yamamoto, I. Sugiyama, S. Shiraki, S. Orimo, and T. Hitosugi, APL Mater. 5, 086102 (2017).

[52] P. Vajda, in Handb. Phys. Chem. Rare Earths (1995), pp. 207–291.

[53] R. Green, W. G. Bos, and W. F. Huang, Phys. Rev. B 3, 64 (1971).

[54] M. P. Chouinard, D. R. Gustafson, and R. C. Heckman, J. Chem. Phys. 51, 3554 (1969).

[55] R. C. Heckman, J. Chem. Phys. 46, 2158 (1967).

[56] R. C. Heckman, J. Chem. Phys. 48, 5281 (1968).

[57] R. C. Heckman, J. Chem. Phys. 40, 2958 (1964).

[58] B. Z. Bieganski, Berichte Der Bunsengesellschaft Für Phys. Chemie 76, 1183 (1972).

[59] A. Fujimori, F. Minami, and N. Tsuda, Phys. Rev. B 22, 3573 (1980).

[60] A. Fujimori and N. Tsuda, Phys. Status Solidi 114, K139 (1982).

[61] J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. de Groot, and N. J. Koeman, Nature 380, 231 (1996).

[62] P. H. L. Notten, Curr. Opin. Solid State Mater. Sci. 4, 5 (1999).

[63] H. Mizoguchi, M. Okunaka, M. Kitano, S. Matsuishi, T. Yokoyama, and H. Hosono, Inorg. Chem. 55, 8833 (2016).

[64] F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, Phys. Rev. Lett. 119, 107001 (2017).

[65] Z. M. Geballe, H. Liu, A. K. Mishra, M. Ahart, M. Somayazulu, Y. Meng, M. Baldini, and R. J. Hemley, Angew. Chemie Int. Ed. 57, 688 (2018).

[66] M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, ArXiv:1808.07695 [Cond-Mat] (2018).

[67] S. H. Liu, Solid State Commun. 61, 89 (1987).

[68] C. Koitzsch, J. Hayoz, M. Bovet, F. Clerc, L. Despont, C. Ambrosch-Draxl, and P. Aebi, Phys. Rev. B 70, 165114 (2004).

[69] P. Vajda, J. P. Burger, and J. N. Daou, Europhys. Lett. 11, 567 (1990).

[70] R. R. Arons and J. W. Cable, Solid State Commun. 55, 835 (1985).

[71] S. Senoussi, J. N. Daou, P. Vajda, and J. P. Burger, J. Less Common Met. 130, 55 (1987).

[72] R. R. Arons and J. Schweizer, J. Appl. Phys. 53, 2645 (1982).

[73] P. Vajda, J. N. Daou, and J. P. Burger, J. Less Common Met. 172–174, 271 (1991).

[74] S. Hémon, R. A. Cowley, R. C. C. Ward, M. R. Wells, L. Douysset, and H. Ronnow, J. Phys. Condens. Matter 12, 5011 (2001).

[75] P. Vajda, J. N. Daou, and G. Andre, Phys. Rev. B 48, 6116 (1993).

[76] H. Shaked, D. G. Westlake, J. Faber, and M. H. Mueller, Phys. Rev. B 30, 328 (1984).

[77] J. P. Burger, J. N. Daou, A. Lucasson, and P. Vajda, Phys. Rev. B 34, 4782 (1986).

[78] Y. Kubota and W. E. Wallace, J. Chem. Phys. 39, 1285 (1963).

[79] J. Bang, S. Matsuishi, H. Hiraka, F. Fujisaki, T. Otomo, S. Maki, J. Yamaura, R. Kumai, Y. Murakami, and H. Hosono, J. Am. Chem. Soc. 136, 7221 (2014).

[80] C. Tassel, Y. Goto, D. Watabe, Y. Tang, H. Lu, Y. Kuno, F. Takeiri, T. Yamamoto, C. M. Brown, J. Hester, Y. Kobayashi, and H. Kageyama, Angew. Chemie - Int. Ed. 55, 9667 (2016).

[81] S.-W. Park, H. Mizoguchi, H. Hiraka, K. Ikeda, T. Otomo, and H. Hosono, Inorg. Chem. 56, 13642 (2017).

[82] Y. Goto, C. Tassel, Y. Noda, O. Hernandez, C. J. Pickard, M. A. Green, H. Sakaebe, N. Taguchi, Y. Uchimoto, Y. Kobayashi, and H. Kageyama, Inorg. Chem. 56, 4840 (2017).

[83] T. Yamamoto, K. Shitara, S. Kitagawa, A. Kuwabara, M. Kuroe, K. Ishida, M. Ochi, K. Kuroki, K. Fujii, M. Yashima, C. M. Brown, H. Takatsu, C. Tassel, and H. Kageyama, Chem. Mater. 30, 1566 (2018).

[84] J. Ueda, S. Matsuishi, T. Tokunaga, and S. Tanabe, J. Mater. Chem. C 6, 7541 (2018).

[85] T. Katayama, A. Chikamatsu, K. Yamada, K. Shigematsu, T. Onozuka, M. Minohara, H. Kumigashira, E. Ikenaga, and T. Hasegawa, J. Appl. Phys. 120, 085305 (2016).

[86] T. Yajima, A. Kitada, Y. Kobayashi, T. Sakaguchi, G. Bouilly, S. Kasahara, T. Terashima, M. Takano, and H. Kageyama, J. Am. Chem. Soc. 134, 8782 (2012).

[87] T. Katayama, A. Chikamatsu, Y. Hirose, H. Kumigashira, T. Fukumura, and T. Hasegawa, J. Phys. D. Appl. Phys. 47, 135304 (2014).

[88] Y. Kurauchi, H. Kamisaka, T. Katayama, A. Chikamatsu, and T. Hasegawa, J. Phys. Chem. C 121, 7478 (2017).

[89] T. Onozuka, A. Chikamatsu, T. Katayama, T. Fukumura, and T. Hasegawa, Dalt. Trans. 45, 12114 (2016).

[90] N. Ichikawa, M. Iwanowska, M. Kawai, C. Calers, W. Paulus, and Y. Shimakawa, Dalt. Trans. 41, 10507 (2012).

[91] T. Katayama, A. Chikamatsu, H. Kamisaka, Y. Yokoyama, Y. Hirata, H. Wadati, T. Fukumura, and T. Hasegawa, AIP Adv. 5, 107147 (2015).

[92] G. Bouilly, T. Yajima, T. Terashima, Y. Kususe, K. Fujita, C. Tassel, T. Yamamoto, K. Tanaka, Y. Kobayashi, and H. Kageyama, CrystEngComm 16, 9669 (2014).

[93] H. Krebs, M. Weisheit, J. Faupel, E. Süske, T. Scharf, C. Fuhse, M. Störmer, K. Sturm, M. Seibt, H. Kijewski, D. Nelke, E. Panchenko, and M. Buback, in Adv. Solid State Phys. (2003), pp. 505–518.

[94] U. Pielmeier, S. Andreassen, B. Juliussen, J. G. Chase, B. S. Nielsen, and P. Haure, J. Crit. Care 25, 97 (2010).

[95] B. B. He, U. Preckwinkel, and K. L. Smith, Adv. X-Ray Anal. 43, 273 (2000).

[96] C. Kittel, Introduction to Solid State Physics (Wiley, 2004).

[97] 金原粲, 吉田貞史, 近藤高志, 薄膜工学 (丸善出版, 2011).

[98] P. F. Fewster, X-Ray Scattering from Semiconductors (Imperial College Press, 2000).

[99] 青野正和, 表面の組成分析 (丸善出版, 1999).

[100] D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, Scanning 29, 92 (2007).

[101] 藤本文範, 小牧研一郎, イオンビームによる物質分析・物質改質 (内田老鶴圃,2000).

[102] I. Harayama, K. Nagashima, Y. Hirose, H. Matsuzaki, and D. Sekiba, Nucl. Inst. Methods Phys. Res. B 384, 61 (2016).

[103] D. Sekiba, M. Horikoshi, S. Abe, and S. Ishii, J. Appl. Phys. 106, 114912 (2009).

[104] 大塚洋一, 小林俊一, 丸善実験物理学講座 <11> 輸送現象測定 (丸善出版, 1999).

[105] M. Wakeshima, H. Masuda, K. Yamada, N. Sato, and T. Fujino, Bull. Inst. Adv. Mater. Process. Tohoku Univ. 52, 135 (1997).

[106] 志賀正幸, 磁性入門 (内田老鶴圃, 2014).

[107] G. Bouilly, T. Yajima, T. Terashima, W. Yoshimune, K. Nakano, C. Tassel, Y. Kususe, K. Fujita, K. Tanaka, T. Yamamoto, Y. Kobayashi, and H. Kageyama, Chem. Mater. 27, 6354 (2015).

[108] D. Pesquera, G. Herranz, A. Barla, E. Pellegrin, F. Bondino, E. Magnano, F. Sánchez, and J. Fontcuberta, Nat. Commun. 3, 1189 (2012).

[109] C. M. Brooks, L. F. Kourkoutis, T. Heeg, J. Schubert, D. A. Muller, and D. G. Schlom, Appl. Phys. Lett. 94, 162905 (2009).

[110] H. N. Lee, S. S. Ambrose Seo, W. S. Choi, and C. M. Rouleau, Sci. Rep. 6, 19941 (2016).

[111] A. Spinelli, M. A. Torija, C. Liu, C. Jan, and C. Leighton, Phys. Rev. B 81, 155110 (2010).

[112] M. A. Moram and M. E. Vickers, Reports Prog. Phys. 72, 036502 (2009).

[113] M. Sillassen, P. Eklund, N. Pryds, E. Johnson, U. Helmersson, and J. Bøttiger, Adv. Funct. Mater. 20, 2071 (2010).

[114] M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter, and J. Fleig, ACS Nano 7, 3276 (2013).

[115] Y. Iwazaki, T. Suzuki, and S. Tsuneyuki, J. Appl. Phys. 108, 083705 (2010).

[116] R. AL-Hamadany, J. P. Goss, P. R. Briddon, S. A. Mojarad, A. G. O’Neill, and M. J. Rayson, J. Appl. Phys. 113, 224108 (2013).

[117] R. Al-Hamadany, J. P. Goss, P. R. Briddon, S. A. Mojarad, M. Al-Hadidi, A. G. O’Neill, and M. J. Rayson, J. Appl. Phys. 113, 024108 (2013).

[118] K. Kumagai, T. Suzuki, Y. Taguchi, Y. Okada, Y. Fujishima, and Y. Tokura, Phys. Rev. B 48, 7636 (1993).

[119] T. Katsufuji, Y. Taguchi, and Y. Tokura, Phys. Rev. B 56, 10145 (1997).

[120] G. Sclauzero, K. Dymkowski, and C. Ederer, Phys. Rev. B 94, 245109 (2016).

[121] G. Wiesinger and G. Hilscher, in Handb. Magn. Mater. (1991), pp. 511–584.

[122] J. N. Daou, J. P. Burger, and P. Vajda, Philos. Mag. B 65, 127 (1992).

[123] D. Sekiba, N. Takemoto, M. Okada, S. Ishii, T. Sakurai, and K. Akimoto, Diam. Relat. Mater. 27–28, 60 (2012).

[124] R. L. Carlin, L. J. Krause, A. Lambrecht, and H. Claus, J. Appl. Phys. 53, 2634 (1982).

[125] I. Warshaw and R. Roy, J. Phys. Chem. 65, 2048 (1961).

[126] T. H. Chiang, S. Y. Wu, T. S. Huang, C. H. Hsu, J. Kwo, and M. Hong, CrystEngComm 16, 8457 (2014).

[127] A. Sharma and W. Nolting, Phys. Rev. B 81, 125303 (2010).

[128] C. Mitra and W. R. L. Lambrecht, Phys. Rev. B 78, 134421 (2008).

[129] S. Granville, B. J. Ruck, F. Budde, A. Koo, D. J. Pringle, F. Kuchler, A. R. H. Preston, D. H. Housden, N. Lund, A. Bittar, G. V. M. Williams, and H. J. Trodahl, Phys. Rev. B - Condens. Matter Mater. Phys. 73, 1 (2006).

[130] F. Leuenberger, A. Parge, W. Felsch, K. Fauth, and M. Hessler, Phys. Rev. B - Condens. Matter Mater. Phys. 72, 1 (2005).

[131] X. Han, J. Lee, and H. I. Yoo, Phys. Rev. B - Condens. Matter Mater. Phys. 79, 2 (2009).

[132] A. Miniotas, P. Nordblad, M. Andersson, and B. Hjörvarsson, Europhys. Lett. 58, 442 (2002).

[133] A. G. Zabrodskii and K. N. Zinov’eva, Sov. Phys.JETP 59, 425 (1984).

[134] K. Matsuhira, M. Tokunaga, M. Wakeshima, Y. Hinatsu, and S. Takagi, J. Phys. Soc. Japan 82, 1 (2013).

[135] E. J. Wildman, J. M. S. Skakle, N. Emery, and A. C. Mclaughlin, J. Am. Chem. Soc. 134, 8766 (2012).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る