リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Quantitative analyses reveal extracellular dynamics of Wnt ligands in Xenopus embryos」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Quantitative analyses reveal extracellular dynamics of Wnt ligands in Xenopus embryos

Mii, Yusuke Nakazato, Kenichi Pack, Chan-Gi Ikeda, Takafumi Sako, Yasushi Mochizuki, Atsushi Taira, Masanori Takada, Shinji 京都大学 DOI:10.7554/eLife.55108

2021

概要

The mechanism of intercellular transport of Wnt ligands is still a matter of debate. To better understand this issue, we examined the distribution and dynamics of Wnt8 in Xenopus embryos. While Venus-tagged Wnt8 was found on the surfaces of cells close to Wnt-producing cells, we also detected its dispersal over distances of 15 cell diameters. A combination of fluorescence correlation spectroscopy and quantitative imaging suggested that only a small proportion of Wnt8 ligands diffuses freely, whereas most Wnt8 molecules are bound to cell surfaces. Fluorescence decay after photoconversion showed that Wnt8 ligands bound on cell surfaces decrease exponentially, suggesting a dynamic exchange of bound forms of Wnt ligands. Mathematical modeling based on this exchange recapitulates a graded distribution of bound, but not free, Wnt ligands. Based on these results, we propose that Wnt distribution in tissues is controlled by a dynamic exchange of its abundant bound and rare free populations.

この論文で使われている画像

参考文献

Alexandre C, Baena-Lopez A, Vincent JP. 2014. Patterning and growth control by membrane-tethered wingless.

Nature 505:180–185. DOI: https://doi.org/10.1038/nature12879, PMID: 24390349

Baeg GH, Selva EM, Goodman RM, Dasgupta R, Perrimon N. 2004. The wingless morphogen gradient is established by the cooperative action of frizzled and heparan sulfate proteoglycan receptors. Developmental Biology 276:89–100. DOI: https://doi.org/10.1016/j.ydbio.2004.08.023, PMID: 15531366

Chaudhary V, Hingole S, Frei J, Port F, Strutt D, Boutros M. 2019. Robust wnt signaling is maintained by a wg protein gradient and Fz2 receptor activity in the developing Drosophila wing. Development 146:dev174789. DOI: https://doi.org/10.1242/dev.174789, PMID: 31399474

Clevers H, Loh KM, Nusse R. 2014. Stem cell signaling an integral program for tissue renewal and regeneration: wnt signaling and stem cell control. Science 346:1248012. DOI: https://doi.org/10.1126/science.1248012, PMID: 25278615

Clevers H, Nusse R. 2012. Wnt/b-catenin signaling and disease. Cell 149:1192–1205. DOI: https://doi.org/10. 1016/j.cell.2012.05.012, PMID: 22682243

Crank J. 1975. The Mathematics of Diffusion. Oxford University Press.

Evan GI, Lewis GK, Ramsay G, Bishop JM. 1985. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Molecular and Cellular Biology 5:3610–3616. DOI: https://doi.org/10.1128/MCB.5. 12.3610, PMID: 3915782

Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DV, de Punder K, Angers S, Peters PJ, Maurice MM, Clevers H. 2016. Visualization of a short-range wnt gradient in the intestinal stem-cell niche. Nature 530:340–343. DOI: https://doi.org/10.1038/nature16937, PMID: 26863187

Field J, Nikawa J, Broek D, MacDonald B, Rodgers L, Wilson IA, Lerner RA, Wigler M. 1988. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Molecular and Cellular Biology 8:2159–2165. DOI: https://doi.org/10.1128/MCB.8.5.2159, PMID: 2455217

Fradin C. 2017. On the importance of protein diffusion in biological systems: the example of the bicoid morphogen gradient. Biochimica Et Biophysica Acta (BBA) - Proteins and Proteomics 1865:1676–1686. DOI: https://doi.org/10.1016/j.bbapap.2017.09.002

Franch-Marro X, Marchand O, Piddini E, Ricardo S, Alexandre C, Vincent JP. 2005. Glypicans shunt the wingless signal between local signalling and further transport. Development 132:659–666. DOI: https://doi.org/10.1242/ dev.01639, PMID: 15647318

Habuchi S, Tsutsui H, Kochaniak AB, Miyawaki A, van Oijen AM. 2008. mKikGR, a monomeric photoswitchable fluorescent protein. PLOS ONE 3:e3944. DOI: https://doi.org/10.1371/journal.pone.0003944, PMID: 19079591

Han C, Yan D, Belenkaya TY, Lin X. 2005. Drosophila glypicans dally and Dally-like shape the extracellular wingless morphogen gradient in the wing disc. Development 132:667–679. DOI: https://doi.org/10.1242/dev. 01636, PMID: 15647319

Harmansa S, Hamaratoglu F, Affolter M, Caussinus E. 2015. Dpp spreading is required for medial but not for lateral wing disc growth. Nature 527:317–322. DOI: https://doi.org/10.1038/nature15712, PMID: 26550827

Hashimoto W, Maruyama Y, Nakamichi Y, Mikami B, Murata K. 2014. Crystal structure of Pedobacter heparinus heparin lyase hep III with the active site in a deep cleft. Biochemistry 53:777–786. DOI: https://doi.org/10.1021/bi4012463, PMID: 24437462

Hess ST, Huang S, Heikal AA, Webb WW. 2002. Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41:697–705. DOI: https://doi.org/10.1021/bi0118512, PMID: 11790090

Kerszberg M, Wolpert L. 1998. Mechanisms for positional signalling by morphogen transport: a theoretical study. Journal of Theoretical Biology 191:103–114. DOI: https://doi.org/10.1006/jtbi.1997.0575, PMID: 95 93661

Kicheva A, Pantazis P, Bollenbach T, Kalaidzidis Y, Bittig T, Ju¨ licher F, Gonza´lez-Gaita´ n M. 2007. Kinetics of morphogen gradient formation. Science 315:521–525. DOI: https://doi.org/10.1126/science.1135774, PMID: 17255514

Kicheva A, Bollenbach T, Wartlick O, Ju¨ licher F, Gonzalez-Gaitan M. 2012. Investigating the principles of morphogen gradient formation: from tissues to cells. Current Opinion in Genetics & Development 22:527–532. DOI: https://doi.org/10.1016/j.gde.2012.08.004, PMID: 22959150

Kiecker C, Niehrs C. 2001. A morphogen gradient of wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128:4189–4201. DOI: https://doi.org/10.1242/dev.128.21.4189, PMID: 11684656

Kikuchi A, Yamamoto H, Sato A. 2009. Selective activation mechanisms of wnt signaling pathways. Trends in Cell Biology 19:119–129. DOI: https://doi.org/10.1016/j.tcb.2009.01.003, PMID: 19208479

Kure S, Yoshie O. 1986. A syngeneic monoclonal antibody to murine Meth-A sarcoma (HepSS-1) recognizes heparan sulfate glycosaminoglycan (HS-GAG): cell density and transformation dependent alteration in cell surface HS-GAG defined by HepSS-1. Journal of Immunology 137:3900–3908. PMID: 2431047

Lin X. 2004. Functions of heparan sulfate proteoglycans in cell signaling during development. Development 131: 6009–6021. DOI: https://doi.org/10.1242/dev.01522, PMID: 15563523

Loh KM, van Amerongen R, Nusse R. 2016. Generating cellular diversity and spatial form: wnt signaling and the evolution of multicellular animals. Developmental Cell 38:643–655. DOI: https://doi.org/10.1016/j.devcel.2016. 08.011, PMID: 27676437

MacDonald BT, Tamai K, He X. 2009. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental Cell 17:9–26. DOI: https://doi.org/10.1016/j.devcel.2009.06.016, PMID: 19619488

Marjoram L, Wright C. 2011. Rapid differential transport of nodal and lefty on sulfated proteoglycan-rich extracellular matrix regulates left-right asymmetry in Xenopus. Development 138:475–485. DOI: https://doi. org/10.1242/dev.056010, PMID: 21205792

Matsuda T, Miyawaki A, Nagai T. 2008. Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein. Nature Methods 5:339–345. DOI: https://doi.org/10.1038/nmeth.1193, PMID: 18345008

Mii Y, Yamamoto T, Takada R, Mizumoto S, Matsuyama M, Yamada S, Takada S, Taira M. 2017. Roles of two types of heparan sulfate clusters in wnt distribution and signaling in Xenopus. Nature Communications 8:1973. DOI: https://doi.org/10.1038/s41467-017-02076-0, PMID: 29215008

Mii Y, Taira M. 2009. Secreted Frizzled-related proteins enhance the diffusion of wnt ligands and expand their signalling range. Development 136:4083–4088. DOI: https://doi.org/10.1242/dev.032524, PMID: 19906850 Mii Y, Takada S. 2020. Heparan sulfate proteoglycan clustering in wnt signaling and dispersal. Frontiers in Cell and Developmental Biology 8:631. DOI: https://doi.org/10.3389/fcell.2020.00631, PMID: 32760727

Mu¨ ller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF. 2012. Differential diffusivity of nodal and lefty underlies a reaction-diffusion patterning system. Science 336:721–724. DOI: https://doi.org/10. 1126/science.1221920, PMID: 22499809

Mu¨ ller P, Rogers KW, Yu SR, Brand M, Schier AF. 2013. Morphogen transport. Development 140:1621–1638. DOI: https://doi.org/10.1242/dev.083519, PMID: 23533171

Mu¨ ller P, Schwille P, Weidemann T. 2014. PyCorrFit-generic data evaluation for fluorescence correlation spectroscopy. Bioinformatics 30:2532–2533. DOI: https://doi.org/10.1093/bioinformatics/btu328, PMID: 24 825612

Nieuwkoop PD, Faber J. 1967. Normal Table of Xenopus laevis (Daudin). Garland Science.

Nusse R, Clevers H. 2017. Wnt/b-Catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985– 999. DOI: https://doi.org/10.1016/j.cell.2017.05.016, PMID: 28575679

Pack C, Saito K, Tamura M, Kinjo M. 2006. Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric EGFPs. Biophysical Journal 91:3921–3936. DOI: https://doi.org/10. 1529/biophysj.105.079467, PMID: 16950841

Pani AM, Goldstein B. 2018. Direct visualization of a native wnt in vivo reveals that a long-range wnt gradient forms by extracellular dispersal. eLife 7:e38325. DOI: https://doi.org/10.7554/eLife.38325, PMID: 30106379

Plouhinec J-L, Zakin L, Moriyama Y, De Robertis EM. 2013. Chordin forms a self-organizing morphogen gradient in the extracellular space between ectoderm and mesoderm in the Xenopus embryo. PNAS 110:20372–20379. DOI: https://doi.org/10.1073/pnas.1319745110

Rogers KW, Schier AF. 2011. Morphogen gradients: from generation to interpretation. Annual Review of Cell and Developmental Biology 27:377–407. DOI: https://doi.org/10.1146/annurev-cellbio-092910-154148

Routledge D, Scholpp S. 2019. Mechanisms of intercellular wnt transport. Development 146:dev176073. DOI: https://doi.org/10.1242/dev.176073, PMID: 31092504

Roy S, Hsiung F, Kornberg TB. 2011. Specificity of Drosophila cytonemes for distinct signaling pathways. Science 332:354–358. DOI: https://doi.org/10.1126/science.1198949, PMID: 21493861

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9:676–682. DOI: https://doi.org/10.1038/nmeth.2019, PMID: 22743772

Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, et al. 2016. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343. DOI: https://doi.org/ 10.1038/nature19840

Shimokawa K, Kimura-Yoshida C, Nagai N, Mukai K, Matsubara K, Watanabe H, Matsuda Y, Mochida K, Matsuo I. 2011. Cell surface heparan sulfate chains regulate local reception of FGF signaling in the mouse embryo. Developmental Cell 21:257–272. DOI: https://doi.org/10.1016/j.devcel.2011.06.027, PMID: 21839920

Smith JC. 2009. Forming and interpreting gradients in the early Xenopus embryo. Cold Spring Harbor Perspectives in Biology 1:a002477. DOI: https://doi.org/10.1101/cshperspect.a002477, PMID: 20066079

Sprague BL, Pego RL, Stavreva DA, McNally JG. 2004. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophysical Journal 86:3473–3495. DOI: https://doi.org/10.1529/biophysj.103.026765, PMID: 15189848

Sprague BL, McNally JG. 2005. FRAP analysis of binding: proper and fitting. Trends in Cell Biology 15:84–91. DOI: https://doi.org/10.1016/j.tcb.2004.12.001, PMID: 15695095

Stanganello E, Hagemann AI, Mattes B, Sinner C, Meyen D, Weber S, Schug A, Raz E, Scholpp S. 2015. Filopodia-based wnt transport during vertebrate tissue patterning. Nature Communications 6:5846. DOI: https://doi.org/10.1038/ncomms6846, PMID: 25556612

Stapornwongkul KS, de Gennes M, Cocconi L, Salbreux G, Vincent JP. 2020. Patterning and growth control in vivo by an engineered GFP gradient. Science 370:321–327. DOI: https://doi.org/10.1126/science.abb8205, PMID: 33060356

Strigini M, Cohen SM. 2000. Wingless gradient formation in the Drosophila wing. Current Biology 10:293–300. DOI: https://doi.org/10.1016/S0960-9822(00)00378-X, PMID: 10744972

Suzuki K, Yamamoto K, Kariya Y, Maeda H, Ishimaru T, Miyaura S, Fujii M, Yusa A, Joo EJ, Kimata K, Kannagi R, Kim YS, Kyogashima M. 2008. Generation and characterization of a series of monoclonal antibodies that specifically recognize [HexA(+/-2S)-GlcNAc]n epitopes in heparan sulfate. Glycoconjugate Journal 25:703–712. DOI: https://doi.org/10.1007/s10719-008-9130-z, PMID: 18461440

Tabata T, Takei Y. 2004. Morphogens, their identification and regulation. Development 131:703–712. DOI: https://doi.org/10.1242/dev.01043, PMID: 14757636

Takada R, Mii Y, Krayukhina E, Maruyama Y, Mio K, Sasaki Y, Shinkawa T, Pack CG, Sako Y, Sato C, Uchiyama S, Takada S. 2018. Assembly of protein complexes restricts diffusion of Wnt3a proteins. Communications Biology 1:165. DOI: https://doi.org/10.1038/s42003-018-0172-x, PMID: 30320232

Takei Y, Ozawa Y, Sato M, Watanabe A, Tabata T. 2004. Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131:73–82. DOI: https://doi.org/ 10.1242/dev.00913, PMID: 14645127

Toda S, McKeithan WL, Hakkinen TJ, Lopez P, Klein OD, Lim WA. 2020. Engineering synthetic morphogen systems that can program multicellular patterning. Science 370:327–331. DOI: https://doi.org/10.1126/science. abc0033, PMID: 33060357

Tsutsumi M, Muto H, Myoba S, Kimoto M, Kitamura A, Kamiya M, Kikukawa T, Takiya S, Demura M, Kawano K, Kinjo M, Aizawa T. 2016. In vivo fluorescence correlation spectroscopy analyses of FMBP-1, a silkworm transcription factor. FEBS Open Bio 6:106–125. DOI: https://doi.org/10.1002/2211-5463.12026, PMID: 2723 9433

van den Heuvel M, Nusse R, Johnston P, Lawrence PA. 1989. Distribution of the wingless gene product in Drosophila embryos: a protein involved in cell-cell communication. Cell 59:739–749. DOI: https://doi.org/10. 1016/0092-8674(89)90020-2, PMID: 2582493

Veerapathiran S, Teh C, Zhu S, Kartigayen I, Korzh V, Matsudaira PT, Wohland T. 2020. Wnt3 distribution in the zebrafish brain is determined by expression, diffusion and multiple molecular interactions. eLife 9:e59489. DOI: https://doi.org/10.7554/eLife.59489, PMID: 33236989

Verrecchio A, Germann MW, Schick BP, Kung B, Twardowski T, San Antonio JD. 2000. Design of peptides with high affinities for heparin and endothelial cell proteoglycans. Journal of Biological Chemistry 275:7701–7707. DOI: https://doi.org/10.1074/jbc.275.11.7701, PMID: 10713081

Wang Z, Raifu M, Howard M, Smith L, Hansen D, Goldsby R, Ratner D. 2000. Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3’ to 5’ exonuclease activity. Journal of Immunological Methods 233:167–177. DOI: https://doi.org/10.1016/S0022-1759(99)00184-2, PMID: 10648866

Yamamoto H, Komekado H, Kikuchi A. 2006. Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Developmental Cell 11:213–223. DOI: https://doi.org/10.1016/j.devcel.2006. 07.003, PMID: 16890161

Yan D, Lin X. 2009. Shaping morphogen gradients by proteoglycans. Cold Spring Harbor Perspectives in Biology 1:a002493. DOI: https://doi.org/10.1101/cshperspect.a002493, PMID: 20066107

Yu SR, Burkhardt M, Nowak M, Ries J, Petra´ sek Z, Scholpp S, Schwille P, Brand M. 2009. Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461:533–536. DOI: https:// doi.org/10.1038/nature08391, PMID: 19741606

Zacharias DA, Violin JD, Newton AC, Tsien RY. 2002. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916. DOI: https://doi.org 10.1126/science.1068539, PMID: 11988576

Zecca M, Basler K, Struhl G. 1996. Direct and long-range action of a wingless morphogen gradient. Cell 87:833– 844. DOI: https://doi.org/10.1016/S0092-8674(00)81991-1, PMID: 8945511

Zhou S, Lo WC, Suhalim JL, Digman MA, Gratton E, Nie Q, Lander AD. 2012. Free extracellular diffusion creates the dpp morphogen gradient of the Drosophila wing disc. Current Biology 22:668–675. DOI: https://doi.org/ 10.1016/j.cub.2012.02.065, PMID: 22445299

Zhu AJ, Scott MP. 2004. Incredible journey: how do developmental signals travel through tissue? Genes & Development 18:2985–2997. DOI: https://doi.org/10.1101/gad.1233104, PMID: 15601817

参考文献をもっと見る