リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synaptic plasticity during systems memory consolidation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synaptic plasticity during systems memory consolidation

Goto, Akihiro 京都大学 DOI:10.1016/j.neures.2022.05.008

2022.10

概要

After learning, memory is initially encoded in the hippocampus but subsequently stabilized in other brain regions such as the cortex for long-lasting storage. This process is known as systems memory consolidation, and its cellular mechanism has long been a fundamental question. Synaptic plasticity is the major cellular mechanism underlying learning and memory, and is therefore considered a key function in the process of systems memory consolidation. Therefore, many studies have aimed to establish a causal link between synaptic plasticity in the brain and memory-associated behaviors. In this review, I discuss the various lines of research showing the function of synaptic plasticity, mainly in the hippocampus and cortex during memory consolidation.

この論文で使われている画像

参考文献

Bontempi, B., Laurent-Demir, C., Destrade, C., Jaffard, R., 1999. Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400, 671–675.

Bosch, M., Castro, J., Saneyoshi, T., Matsuno, H., Sur, M., Hayashi, Y., 2014. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82, 444–459.

Corkin, S., 2002. What’s new with the amnesic patient H.M.? Nat. Rev. Neurosci. 3, 153–160.

Derkach, V., Barria, A., Soderling, T.R., 1999. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 3269–3274.

Dupret, D., O’Neill, J., Pleydell-Bouverie, B., Csicsvari, J., 2010. The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat.

Neurosci. 13, 995–1002.

Ego-Stengel, V., Wilson, M.A., 2010. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20, 1–10.

Engert, F., Bonhoeffer, T., 1999. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70.

Frankland, P.W., Bontempi, B., 2005. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130.

Frankland, P.W., O’Brien, C., Ohno, M., Kirkwood, A., Silva, A.J., 2001. Alpha-CaMKII- dependent plasticity in the cortex is required for permanent memory. Nature 411, 309–313.

Frankland, P.W., Bontempi, B., Talton, L.E., Kaczmarek, L., Silva, A.J., 2004. The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304, 881–883.

Fujii, S., Saito, K., Miyakawa, H., Ito, K.-i, Kato, H., 1991. Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices. Brain Res. 555, 112–122.

Gais, S., Born, J., 2004. Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proc. Natl. Acad. Sci. USA 101, 2140–2144.

Girardeau, G., Benchenane, K., Wiener, S.I., Buzsaki, G., Zugaro, M.B., 2009. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223.

Goto, A., Bota, A., Miya, K., Wang, J., Tsukamoto, S., Jiang, X., Hirai, D., Murayama, M., Matsuda, T., McHugh, T.J., Nagai, T., Hayashi, Y., 2021. Stepwise synaptic plasticity events drive the early phase of memory consolidation. Science 374, 857–863.

Gusev, P.A., Gubin, A.N., 2010. Arc/Arg3.1 mRNA global expression patterns elicited by memory recall in cerebral cortex differ for remote versus recent spatial memories. Front Integr. Neurosci. 4, 15.

Hayashi, M.L., Choi, S.Y., Rao, B.S., Jung, H.Y., Lee, H.K., Zhang, D., Chattarji, S., Kirkwood, A., Tonegawa, S., 2004. Altered cortical synaptic morphology and impaired memory consolidation in forebrain- specific dominant-negative PAK transgenic mice. Neuron 42, 773–787.

Hayashi, Y., Shi, S.H., Esteban, J.A., Piccini, A., Poncer, J.C., Malinow, R., 2000. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267.

Hayashi-Takagi, A., Yagishita, S., Nakamura, M., Shirai, F., Wu, Y.I., Loshbaugh, A.L., Kuhlman, B., Hahn, K.M., Kasai, H., 2015. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525, 333–338.

Hoffman, K.L., McNaughton, B.L., 2002. Coordinated reactivation of distributed memory traces in primate neocortex. Science 297, 2070–2073.

Jadhav, S.P., Frank, L.M., 2009. Reactivating memories for consolidation. Neuron 62, 745–746.

Ji, D., Wilson, M.A., 2007. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–107.

Jones, M.W., Errington, M.L., French, P.J., Fine, A., Bliss, T.V., Garel, S., Charnay, P., Bozon, B., Laroche, S., Davis, S., 2001. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4, 289–296.

Josselyn, S.A., Kohler, S., Frankland, P.W., 2015. Finding the engram. Nat. Rev. Neurosci. 16, 521–534.

Kandel, Eric R., Dudai, Y., Mayford, Mark, R., 2014. The molecular and systems biology of memory. Cell 157, 163–186.

Karlsson, M.P., Frank, L.M., 2008. Network dynamics underlying the formation of sparse, informative representations in the hippocampus. J. Neurosci. 28, 14271–14281.

Kim, J.J., Fanselow, M.S., 1992. Modality-specific retrograde amnesia of fear. Science 256, 675–677.

Kitamura, T., Ogawa, S.K., Roy, D.S., Okuyama, T., Morrissey, M.D., Smith, L.M., Redondo, R.L., Tonegawa, S., 2017. Engrams and circuits crucial for systems consolidation of a memory. Science 356, 73–78.

Kreitzer, A.C., 2009. Physiology and pharmacology of striatal neurons. Annu. Rev. Neurosci. 32, 127–147.

Kudrimoti, H.S., Barnes, C.A., McNaughton, B.L., 1999. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19, 4090–4101.

Lesburgueres, E., Gobbo, O.L., Alaux-Cantin, S., Hambucken, A., Trifilieff, P., Bontempi, B., 2011. Early tagging of cortical networks is required for the formation of enduring associative memory. Science 331, 924–928.

Lüscher, C., Malenka, R.C., 2012. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 4.

Maletic-Savatic, M., Malinow, R., Svoboda, K., 1999. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927. Matsuzaki, M., Honkura, N., Ellis-Davies, G.C., Kasai, H., 2004. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766.

Maviel, T., Durkin, T.P., Menzaghi, F., Bontempi, B., 2004. Sites of neocortical reorganization critical for remote spatial memory. Science 305, 96–99.

Meyer, D., Bonhoeffer, T., Scheuss, V., 2014. Balance and stability of synaptic structures during synaptic plasticity. Neuron 82, 430–443.

Minatohara, K., Akiyoshi, M., Okuno, H., 2015. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol. Neurosci. 8, 78.

Miyashita, Y., 2004. Cognitive memory: cellular and network machineries and their top- down control. Science 306, 435–440.

Morris, R.G., Anderson, E., Lynch, G.S., Baudry, M., 1986. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319 (774–776).

Murakoshi, H., Shin, M.E., Parra-Bueno, P., Szatmari, E.M., Shibata, A.C.E., Yasuda, R., 2017. Kinetics of endogenous CaMKII required for synaptic plasticity revealed by optogenetic kinase inhibitor. Neuron 94 (37–47), e35.

Nabavi, S., Fox, R., Proulx, C.D., Lin, J.Y., Tsien, R.Y., Malinow, R., 2014. Engineering a memory with LTD and LTP. Nature 511, 348–352.

N´adasdy, Z., Hirase, H., Czurko´, A., Csicsvari, J., Buzs´aki, G., 1999. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497–9507.

Nakashiba, T., Buhl, D.L., McHugh, T.J., Tonegawa, S., 2009. Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron 62, 781–787.

Okamoto, K., Nagai, T., Miyawaki, A., Hayashi, Y., 2004. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci. 7, 1104–1112.

Okamoto, K., Bosch, M., Hayashi, Y., 2009. The roles of CaMKII and F-Actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? Physiology 24, 357–366.

Qin, Y.L., McNaughton, B.L., Skaggs, W.E., Barnes, C.A., 1997. Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1525–1533.

Ribeiro, S., Goyal, V., Mello, C.V., Pavlides, C., 1999. Brain gene expression during REM sleep depends on prior waking experience. Learn Mem. 6, 500–508.

Ribeiro, S., Mello, C.V., Velho, T., Gardner, T.J., Jarvis, E.D., Pavlides, C., 2002. Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampalzif-268expression during ensuing rapid-eye-movement sleep. J. Neurosci. 22, 10914–10923.

Ribeiro, S., Gervasoni, D., Soares, E.S., Zhou, Y., Lin, S.C., Pantoja, J., Lavine, M., Nicolelis, M.A., 2004. Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas. PLoS Biol. 2, E24.

Shimizu, E., Tang, Y.P., Rampon, C., Tsien, J.Z., 2000. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290, 1170–1174.

Siapas, A.G., Wilson, M.A., 1998. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128.

Skaggs, W.E., McNaughton, B.L., 1996. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271, 1870–1873.

Squire, L.R., Stark, C.E., Clark, R.E., 2004. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306.

Takehara-Nishiuchi, K., Nakao, K., Kawahara, S., Matsuki, N., Kirino, Y., 2006. Systems consolidation requires postlearning activation of NMDA receptors in the medial prefrontal cortex in trace eyeblink conditioning. J. Neurosci. 26, 5049–5058.

Takemoto, K., Matsuda, T., Sakai, N., Fu, D., Noda, M., Uchiyama, S., Kotera, I., Arai, Y., Horiuchi, M., Fukui, K., Ayabe, T., Inagaki, F., Suzuki, H., Nagai, T., 2013. SuperNova, a monomeric photosensitizing fluorescent protein for chromophore- assisted light inactivation. Sci. Rep. 3, 2629.

Takemoto, K., Iwanari, H., Tada, H., Suyama, K., Sano, A., Nagai, T., Hamakubo, T., Takahashi, T., 2016. Optical inactivation of synaptic AMPA receptors erases fear memory. Nat. Biotechnol. 35, 38–47.

Tanaka, K.Z., He, H., Tomar, A., Niisato, K., Huang, A.J.Y., McHugh, T.J., 2018. The hippocampal engram maps experience but not place. Science 361, 392–397.

Tonegawa, S., Morrissey, M.D., Kitamura, T., 2018. The role of engram cells in the systems consolidation of memory. Nat. Rev. Neurosci. 19, 485–498.

Tse, D., Langston, R.F., Kakeyama, M., Bethus, I., Spooner, P.A., Wood, E.R., Witter, M. P., Morris, R.G., 2007. Schemas and memory consolidation. Science 316, 76–82.

Tse, D., Takeuchi, T., Kakeyama, M., Kajii, Y., Okuno, H., Tohyama, C., Bito, H., Morris, R.G., 2011. Schema-dependent gene activation and memory encoding in neocortex. Science 333, 891–895.

Tsien, J.Z., Huerta, P.T., Tonegawa, S., 1996. The essential role of hippocampal CA1 NMDA receptor–dependent synaptic plasticity in spatial memory. Cell 87,

1327–1338.

Uylings, H.B., Groenewegen, H.J., Kolb, B., 2003. Do rats have a prefrontal cortex? Behav. Brain Res. 146, 3–17.

Vetere, G., Restivo, L., Cole, C.J., Ross, P.J., Ammassari-Teule, M., Josselyn, S.A., Frankland, P.W., 2011. Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory. Proc. Natl. Acad. Sci. USA 108, 8456–8460.

Whitlock, J.R., Heynen, A.J., Shuler, M.G., Bear, M.F., 2006. Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097.

Ye, L., Allen, W.E., Thompson, K.R., Tian, Q., Hsueh, B., Ramakrishnan, C., Wang, A.C., Jennings, J.H., Adhikari, A., Halpern, C.H., Witten, I.B., Barth, A.L., Luo, L., McNab, J.A., Deisseroth, K., 2016. Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell 165, 1776–1788.

Zhao, M.G., Toyoda, H., Lee, Y.S., Wu, L.J., Ko, S.W., Zhang, X.H., Jia, Y., Shum, F., Xu, H., Li, B.M., Kaang, B.K., Zhuo, M., 2005. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron 47, 859–872.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る