リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Discovery of a Macropinocytosis‐Inducing Peptide Potentiated by Medium‐Mediated Intramolecular Disulfide Formation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Discovery of a Macropinocytosis‐Inducing Peptide Potentiated by Medium‐Mediated Intramolecular Disulfide Formation

Arafiles, Jan Vincent V. Hirose, Hisaaki Hirai, Yusuke Kuriyama, Masashi Sakyiamah, Maxwell Mamfe Nomura, Wataru Sonomura, Kazuhiro Imanishi, Miki Otaka, Akira Tamamura, Hirokazu Futaki, Shiroh 京都大学 DOI:10.1002/anie.202016754

2021.05

概要

Macropinocytosis is among ubiquitous cellular uptake mechanisms of peptide-based intracellular delivery. Due to its capability of engulfing large macromolecules, macropinocytosis shows promise as a route for the intracellular uptake of biomacromolecules and nanoparticles. We previously reported SN21, a peptide derived from the N-terminus of stromal cell-derived growth factor 1α (SDF-1α), as a potent macropinocytosis inducer. In this work, we obtained the 8-residue analog P4A bearing higher macropinocytosis induction ability. P4A contains vital cysteine residues in its sequence, which immediately reacts with cystine in culture medium to convert into its oxidized forms, including the intramolecularly oxidized form (oxP4A) as the dominant and active species. The conjugate of oxP4A with membrane lytic peptide LK15 delivered bioactive proteins into cells; notably, this peptide delivered functional proteins fused with a negatively charged protein tag at a significantly reduced amount (up to nanomolar range) without compromising the delivery efficiency and the cellular activities of delivered proteins.

この論文で使われている画像

参考文献

1. M. P. Stewart, A. Sharei, X. Ding, G. Sahay, R. Langer, K. F. Jensen, Nature 2016, 538, 183–192.

2. a) G. Tünnemann, R. M. Martin, S. Haupt, C. Patsch, F. Edenhofer, M.C. Cardoso, FASEB J. 2006, 20, 1775–1784; b) K. Kettler, K. Veltman,D. van de Meent, A. van Wezel, A. J. Hendriks, Environ. Toxicol. Chem. 2014, 33, 481–492; c) N. Nischan, H. D. Herce, F. Natale, N. Bohlke, N. Budisa, M. C. Cardoso, C. P. R. Hackenberger, Angew. Chem. Int. Ed. 2015, 54, 1950–1953.

3. J. Zhou, Z. Shao, J. Liu, Q. Duan, X. Wang, J. Li, H. Yang, ACS Appl. Bio Mater. 2020, 3, 2686–2701.

4. a) J. Mercer, A. Helenius, Nat. Cell Biol. 2009, 11, 510–520; b) G. Bloomfield, R. R. Kay, J. Cell Sci. 2016, 129, 2697–2705.

5. a) S. Kumari, S. Mg, S. Mayor, Cell Res. 2010, 20, 256–275; b) S. D.Conner, S. L. Schmid, Nature 2003, 422, 37–44.

6. A. T. Jones, J. Cell. Mol. Med. 2007, 11, 670–684.

7. a) I. Nakase, H. Hirose, G. Tanaka, A. Tadokoro, S. Kobayashi, T. Takeuchi, S. Futaki, Mol. Ther. 2009, 17, 1868–1876; b) I. Nakase, M. Niwa, T. Takeuchi, K. Sonomura, N. Kawabata, Y. Koike, M. Takehashi,S. Tanaka, K. Ueda, J. C. Simpson, A. T. Jones, Y. Sugiura, S. Futaki, Mol. Ther. 2004, 10, 1011–1022; c) K. Sakagami, T. Masuda, K. Kawano, S. Futaki, Mol. Pharm. 2018, 15, 1332–1340; d) S. Futaki, J. V.V. Arafiles, H. Hirose, Chem. Lett. 2020, 49, 1088–1094.

8. G. Tanaka, I. Nakase, Y. Fukuda, R. Masuda, S. Oishi, K. Shimura, Y. Kawaguchi, T. Takatani-Nakase, Ü. Langel, A. Gräslund, K. Okawa, M. Matsuoka, N. Fujii, Y. Hatanaka, S. Futaki, Chem. Biol. 2012, 19, 1437–1446.

9. J. V. V. Arafiles, H. Hirose, M. Akishiba, S. Tsuji, M. Imanishi, S. Futaki,Bioconjug. Chem. 2020, 31, 547–553.

10. C. T. Veldkamp, C. Seibert, F. C. Peterson, N. B. De la Cruz, J. C. Haugner, H. Basnet, T. P. Sakmar, B. F. Volkman, Sci. Signal. 2008, 1, ra4.

11. L. Li, T. Wan, M. Wan, B. Liu, R. Cheng, R. Zhang, Cell Biol. Int. 2015,39, 531–539.

12. M. M. Sakyiamah, W. Nomura, T. Kobayakawa, H. Tamamura,Bioconjug. Chem. 2019, 30, 1442–1450.

13. M. Koivusalo, C. Welch, H. Hayashi, C. C. Scott, M. Kim, T. Alexander,N. Touret, K. M. Hahn, S. Grinstein, J. Cell Biol. 2010, 188, 547–563.

14. N. Araki, M. T. Johnson, J. A. Swanson, J. Cell Biol. 1996, 135, 1249– 1260.

15. J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, R. Wedlich- Soldner, Nat. Methods 2008, 5, 605–607.

16. R. E. Hansen, J. R. Winther, Anal. Biochem. 2009, 394, 147–158.

17. a) S. Futaki, K. Kitagawa, Tetrahedron Lett. 1994, 35, 1267–1270; b) K. Akaji, K. Fujino, T. Tatsumi, Y. Kiso, Tetrahedron Lett. 1992, 33, 1073– 1076.

18. C. Wu, J. C. Leroux, M. A. Gauthier, Nat. Chem. 2012, 4, 1044–1049.

19. a) S. Aubry, F. Burlina, E. Dupont, D. Delaroche, A. Joliot, S. Lavielle,G. Chassaing, S. Sagan, FASEB J. 2009, 23, 2956–2967; b) T. Li, W.Gao, J. Liang, M. Zha, Y. Chen, Y. Zhao, C. Wu, Anal. Chem. 2017, 89, 8501–8508.

20. E. Derivery, E. Bartolami, S. Matile, M. Gonzalez-Gaitan, J. Am. Chem. Soc. 2017, 139, 10172–10175.

21. a) Z. Shu, A. Ota, Y. Takayama, Y. Katsurada, K. Kusamori, N. Abe, K. Nakamoto, F. Tomoike, S. Tada, Y. Ito, M. Nishikawa, Y. Kimura, H. Abe, Chem. Pharm. Bull. (Tokyo). 2020, 68, 129–132; b) Z. Shu, I. Tanaka, A. Ota, D. Fushihara, N. Abe, S. Kawaguchi, K. Nakamoto, F. Tomoike, S. Tada, Y. Ito, Y. Kimura, H. Abe, Angew. Chem. Int. Ed. 2019, 58, 6611–6615.

22. Y. Arthanari, A. Pluen, R. Rajendran, H. Aojula, C. Demonacos, J. Control. Release 2010, 145, 272–280.

23. Y. Kawaguchi, T. Takeuchi, K. Kuwata, J. Chiba, Y. Hatanaka, I. Nakase, S. Futaki, Bioconjug. Chem. 2016, 27, 1119–1130.

24. M. Matsuoka, B. Wispriyono, H. Igisu, Biochem. Pharmacol. 2000, 59, 1573–1576.

25. D. Kalderon, B. L. Roberts, W. D. Richardson, A. E. Smith, Cell 1984,39, 499–509.

26. a) J. J. Cronican, D. B. Thompson, K. T. Beier, B. R. McNaughton, C. L. Cepko, D. R. Liu, ACS Chem. Biol. 2010, 5, 747–752; b) D. B.Thompson, J. J. Cronican, D. R. Liu, in Methods Enzymol., Academic Press Inc., 2012, pp. 293–319.

27. J. A. Zuris, D. B. Thompson, Y. Shu, J. P. Guilinger, J. L. Bessen, J. H. Hu, M. L. Maeder, J. K. Joung, Z.-Y. Chen, D. R. Liu, Nat. Biotechnol. 2015, 33, 73–80.

28. a) P. Bannas, J. Hambach, F. Koch-Nolte, Front. Immunol. 2017, 8, 1603; b) E. Y. Yang, K. Shah, Front. Oncol. 2020, 10, 1182.

29. a) A. F. L. Schneider, A. L. D. Wallabregue, L. Franz, C. P. R. Hackenberger, Bioconjug. Chem. 2019, 30, 400–404; b) H. D. Herce, D. Schumacher, A. F. L. Schneider, A. K. Ludwig, F. A. Mann, M. Fillies, M.A. Kasper, S. Reinke, E. Krause, H. Leonhardt, M. C. Cardoso, C. P. R. Hackenberger, Nat. Chem. 2017, 9, 762–771.

30. Y. Katoh, M. Terada, Y. Nishijima, R. Takei, S. Nozaki, H. Hamada, K. Nakayama, J. Biol. Chem. 2016, 291, 10962–10975.

参考文献をもっと見る