リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Artificial Nanocage Formed via Self-Assembly of β-Annulus Peptide for Delivering Biofunctional Proteins into Cell Interiors」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Artificial Nanocage Formed via Self-Assembly of β-Annulus Peptide for Delivering Biofunctional Proteins into Cell Interiors

Sakamoto, Kentarou Furukawa, Hiroto Arafiles, Jan Vincent V. Imanishi, Miki Matsuura, Kazunori Futaki, Shiroh 京都大学 DOI:10.1021/acs.bioconjchem.1c00534

2022.02

概要

Nanocarriers that deliver functional proteins to cell interiors are an attractive platform for the intracellular delivery of intact proteins without further modification, with in vivo compatibility. Development of efficient methods for cargo protein encapsulation and release in recipient cell cytosol is needed. Herein, we assess the feasibility of the abovementioned requirements using a protein nanocage (artificial nanocage) without compromising the structure and functions of the original protein and allowing for design flexibility of the surfaces and interiors. The protein nanocage formed via the self-assembly of the β-annulus peptide (24-amino acid peptide) in water was used as a model framework. The nitrilotriacetic acid moiety was displayed on the nanocage lumen for effective encapsulation of hexahistidine-tagged proteins in the presence of Ni2+, and the amphiphilic cationic lytic peptide HAad was displayed on a nanocage surface to attain cell permeability. Successful intracellular delivery of cargo proteins and targeting of cytosolic proteins by a nanobody were achieved, indicating the validity of the approach employed in this study.

参考文献

(1) Leader, B., Baca, Q. J., and Golan, D. E. (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7, 21-39.

(2) Mitragotri, S., Burke, P. A., and Langer, R. (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13, 655-72.

(3) Niamsuphap, S., Fercher, C., Kumble, S., Huda, P., Mahler, S. M., and Howard, C. B. (2020) Targeting the undruggable: emerging technologies in antibody delivery against intracellular targets. Expert Opin Drug Deliv 17, 1189-1211.

(4) van Witteloostuijn, S. B., Pedersen, S. L., and Jensen, K. J. (2016) Half-life extension of biopharmaceuticals using chemical methods: Alternatives to PEGylation. ChemMedChem 11, 2474-2495.

(5) Futaki, S., Arafiles, J. V. V., and Hirose, H. (2020) Peptide-assisted intracellular delivery of biomacromolecules. Chem Lett 49, 1088-1094.

(6) Baumann, A. L., and Hackenberger, C. P. R. (2019) Tag and release: strategies for the intracellular cleavage of protein conjugates. Curr Opin Chem Biol 52, 39-46.

(7) Lee, E. J., Lee, N. K., and Kim, I. S. (2016) Bioengineered protein-based nanocage for drug delivery. Adv Drug Deliv Rev 106, 157-171.

(8) Molino, N. M., and Wang, S. W. (2014) Caged protein nanoparticles for drug delivery. Curr Opin Biotechnol 28, 75-82.

(9) Zhang, Y., Røise, J. J., Lee, K., Li, J., and Murthy, N. (2018) Recent developments in intracellular protein delivery. Curr Opin Biotechnol 52, 25-31.

(10) Chou, M. I., Hsieh, Y. F., Wang, M., Chang, J. T., Chang, D., Zouali, M., and Tsay, G. J. (2010) In vitro and in vivo targeted delivery of IL-10 interfering RNA by JC virus-like particles. J Biomed Sci 17, 51.

(11) Ashley, C. E., Carnes, E. C., Phillips, G. K., Durfee, P. N., Buley, M. D., Lino, C. A., Padilla, D. P., Phillips, B., Carter, M. B., Willman, C. L., Brinker, C. J., Caldeira Jdo, C., Chackerian, B., Wharton, W., and Peabody, D. S. (2011) Cellspecific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 5, 5729-45.

(12) Lilavivat, S., Sardar, D., Jana, S., Thomas, G. C., and Woycechowsky, K. J. (2012) In vivo encapsulation of nucleic acids using an engineered nonviral protein capsid. J Am Chem Soc 134, 13152-5.

(13) Azuma, Y., Edwardson, T. G. W., Terasaka, N., and Hilvert, D. (2018) Modular protein cages for size-selective RNA packaging in vivo. J Am Chem Soc 140, 566- 569.

(14) Fu, J., and Woycechowsky, K. J. (2020) Guest sequence can influence rna encapsulation by an engineered cationic protein capsid. Biochemistry 59, 1517- 1526.

(15) Seebeck, F. P., Woycechowsky, K. J., Zhuang, W., Rabe, J. P., and Hilvert, D. (2006) A simple tagging system for protein encapsulation. J Am Chem Soc 128, 4516-7.

(16) Azuma, Y., Zschoche, R., Tinzl, M., and Hilvert, D. (2016) Quantitative packaging of active enzymes into a protein cage. Angew Chem Int Ed Engl 55, 1531-4.

(17) Yonezawa, S., Koide, H., and Asai, T. (2020) Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv Drug Deliv Rev 154-155, 64-78.

(18) El-Sayed, A., Khalil, I. A., Kogure, K., Futaki, S., and Harashima, H. (2008) Octaarginine- and octalysine-modified nanoparticles have different modes of endosomal escape. J Biol Chem 283, 23450-61.

(19) Sakamoto, K., Akishiba, M., Iwata, T., Murata, K., Mizuno, S., Kawano, K., Imanishi, M., Sugiyama, F., and Futaki, S. (2020) Optimizing charge switching in membrane lytic peptides for endosomal release of biomacromolecules. Angew Chem Int Ed Engl 59, 19990-19998.

(20) Yu, H.-H., Sakamoto, K., Akishiba, M., Tamemoto, N., Hirose, H., Nakase, I., Imanishi, M., Madani, F., Gräslund, A., and Futaki, S. (2020) Conversion of cationic amphiphilic lytic peptides to cell-penetration peptides. Peptide Sci 112, e24144.

(21) Futaki, S. (2021) Functional peptides that target biomembranes: design and modes of action. Chem Pharm Bull 69, 601-607.

(22) Matsuura, K., Watanabe, K., Matsuzaki, T., Sakurai, K., and Kimizuka, N. (2010) Self-assembled synthetic viral capsids from a 24-mer viral peptide fragment. Angew Chem Int Ed Engl 49, 9662-5.

(23) Matsuura, K. (2020) Dressing up artificial viral capsids self-assembled from Cterminal-modified β-annulus peptides. Polymer J 52, 1035-1041.

(24) Matsuura, K. (2018) Synthetic approaches to construct viral capsid-like spherical nanomaterials. Chem Commun 54, 8944-8959.

(25) Matsuura, K., Watanabe, K., Matsushita, Y., and Kimizuka, N. (2013) Guestbinding behavior of peptide nanocapsules self-assembled from viral peptide fragments. Polymer J 45, 529-534.

(26) Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R., and Stüber, D. (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Bio/Technology 6, 1321-1325.

(27) Janknecht, R., de Martynoff, G., Lou, J., Hipskind, R. A., Nordheim, A., and Stunnenberg, H. G. (1991) Rapid and efficient purification of native histidinetagged protein expressed by recombinant vaccinia virus. Proc Nat Acad Sci U S A 88, 8972-8976.

(28) Matsuura, K., Nakamura, T., Watanabe, K., Noguchi, T., Minamihata, K., Kamiya, N., and Kimizuka, N. (2016) Self-assembly of Ni-NTA-modified β-annulus peptides into artificial viral capsids and encapsulation of His-tagged proteins. Org Biomol Chem 14, 7869-74.

(29) Segel, M., Lash, B., Song, J., Ladha, A., Liu, C. C., Jin, X., Mekhedov, S. L., Macrae, R. K., Koonin, E. V., and Zhang, F. (2021) Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882-889.

(30) Kaczmarczyk, S. J., Sitaraman, K., Young, H. A., Hughes, S. H., and Chatterjee, D. K. (2011) Protein delivery using engineered virus-like particles. Proc Natl Acad Sci U S A 108, 16998-7003.

(31) Abbing, A., Blaschke, U. K., Grein, S., Kretschmar, M., Stark, C. M., Thies, M. J., Walter, J., Weigand, M., Woith, D. C., Hess, J., and Reiser, C. O. (2004) Efficient intracellular delivery of a protein and a low molecular weight substance via recombinant polyomavirus-like particles. J Biol Chem 279, 27410-21.

(32) Dashti, N. H., Abidin, R. S., and Sainsbury, F. (2018) Programmable in vitro coencapsidation of guest proteins for intracellular delivery by virus-like particles. ACS Nano 12, 4615-4623.

(33) Richard, J. P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M. J., Chernomordik, L. V., and Lebleu, B. (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278, 585-90.

(34) Noble, J. E., De Santis, E., Ravi, J., Lamarre, B., Castelletto, V., Mantell, J., Ray, S., and Ryadnov, M. G. (2016) A De novo virus-like topology for synthetic virions. J Am Chem Soc 138, 12202-10.

(35) Sun, W., Ji, W., Hall, J. M., Hu, Q., Wang, C., Beisel, C. L., and Gu, Z. (2015) Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl 54, 12029-33.

(36) Burns, J. R., Lamarre, B., Pyne, A. L. B., Noble, J. E., and Ryadnov, M. G. (2018) DNA origami inside-out viruses. ACS Synth Biol 7, 767-773.

(37) Ijäs, H., Hakaste, I., Shen, B., Kostiainen, M. A., and Linko, V. (2019) Reconfigurable DNA origami nanocapsule for pH-controlled encapsulation and display of cargo. ACS Nano 13, 5959-5967.

(38) El-Sayed, A., Futaki, S., and Harashima, H. (2009) Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J 11, 13-22.

(39) Akishiba, M., Takeuchi, T., Kawaguchi, Y., Sakamoto, K., Yu, H. H., Nakase, I., Takatani-Nakase, T., Madani, F., Gräslund, A., and Futaki, S. (2017) Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat Chem 9, 751-761.

(40) Jewett, J. C., and Bertozzi, C. R. (2010) Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39, 1272-9.

(41) Hall, J. E., Vodyanoy, I., Balasubramanian, T. M., and Marshall, G. R. (1984) Alamethicin. A rich model for channel behavior. Biophys J 45, 233-47.

(42) Thomas, F. A., Visco, I., Petrášek, Z., Heinemann, F., and Schwille, P. (2015) Diffusion coefficients and dissociation constants of enhanced green fluorescent protein binding to free standing membranes. Data Brief 5, 537-41.

(43) Kosuge, M., Takeuchi, T., Nakase, I., Jones, A. T., and Futaki, S. (2008) Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. Bioconjug Chem 19, 656-64.

(44) Tünnemann, G., Martin, R. M., Haupt, S., Patsch, C., Edenhofer, F., and Cardoso, M. C. (2006) Cargo-dependent mode of uptake and bioavailability of TATcontaining proteins and peptides in living cells. FASEB J 20, 1775-84.

(45) Panikar, S. S., Banu, N., Haramati, J., Del Toro-Arreola, S., Riera Leal, A., and Salas, P. (2021) Nanobodies as efficient drug-carriers: progress and trends in chemotherapy. J Control Release 334, 389-412.

(46) Riedl, J., Crevenna, A. H., Kessenbrock, K., Yu, J. H., Neukirchen, D., Bista, M., Bradke, F., Jenne, D., Holak, T. A., Werb, Z., Sixt, M., and Wedlich-Soldner, R. (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5, 605-7.

(47) Nakase, I., Tadokoro, A., Kawabata, N., Takeuchi, T., Katoh, H., Hiramoto, K., Negishi, M., Nomizu, M., Sugiura, Y., and Futaki, S. (2007) Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry 46, 492-501.

(48) Arafiles, J. V. V., Hirose, H., Hirai, Y., Kuriyama, M., Sakyiamah, M. M., Nomura, W., Sonomura, K., Imanishi, M., Otaka, A., Tamamura, H., and Futaki, S. (2021) Discovery of a macropinocytosis-inducing peptide potentiated by medium mediated intramolecular disulfide formation. Angew Chem Int Ed Engl 60, 11928- 11936.

参考文献をもっと見る