リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Accelerated aging of the heart as heart failure with preserved ejection fraction-analysis using leg-positive pressure stress echocardiography」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Accelerated aging of the heart as heart failure with preserved ejection fraction-analysis using leg-positive pressure stress echocardiography

Shono, Ayu Matsumoto, Kensuke Yamada, Nao Kusunose, Kenya Suzuki, Makiko Sumimoto, Keiko Tanaka, Yusuke Yamashita, Kentaro Shibata, Nao Yokota, Shun Suto, Makiko Dokuni, Kumiko Tanaka, Hidekazu Hirata, Ken-ichi 神戸大学

2021.08

概要

The aging process is a significant risk factor for heart failure. The incidence of heart failure with preserved ejection fraction (HFpEF) dramatically increases with age. Although HFpEF occurs along a continuum of aging of the cardiovascular system, the pathophysiology that differentiates overt HFpEF from physiological aging is not fully understood. A total of 102 subjects were prospectively recruited: 25 patients with HFpEF and 77 healthy controls. Controls were stratified into three age-groups: young (n = 27, 20-40 years), middle aged (n = 25, 40-65 years), and elderly (n = 25, > 65 years). All participants underwent preload stress echocardiography using a leg-positive pressure (LPP) maneuver. With an increase in age, progressive concentric left ventricular (LV) remodeling was observed in healthy controls, resulting in the hemodynamic consequences of an age-dependent increase in the E/e' ratio (ANOVA, P < 0.001). During LPP stress, the E/e' ratio significantly increased in the middle-aged and elderly groups (from 8 +/- 2 to 9 +/- 3, from 10 +/- 2 to 12 +/- 3, P < 0.05, respectively), and this was more pronounced in patients with HFpEF (from 16 +/- 5 to 17 +/- 7, P < 0.05). Forward stroke volume (SV) significantly increased in each healthy group during LPP stress (all P < 0.001) but failed to increase in the HFpEF group (from 43 +/- 13 to 44 +/- 14 mL/m(2), P = 0.65). In a multivariate analysis, LV mass index (odds ratio [OR] 1.051, P < 0.05), E/e' ratio (OR 1.480; P < 0.05), and change in SV (OR 0.780; P < 0.05) were independent parameters that differentiated HFpEF from physiological aging. Structural remodeling and impaired preload reserve may both be critical features that characterize the pathophysiology of HFpEF.

この論文で使われている画像

参考文献

1.

Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V,

Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C,

Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope

LM, Ruschitzka F, Rutten FH, van der Meer P and Group ESCSD. 2016 ESC

Guidelines for the diagnosis and treatment of acute and chronic heart failure:

The Task Force for the diagnosis and treatment of acute and chronic heart

failure of the European Society of Cardiology (ESC)Developed with the

special contribution of the Heart Failure Association (HFA) of the ESC. Eur

10

11

Heart J. 2016;37:2129-2200.

2.

van Heerebeek L, Borbely A, Niessen HW, Bronzwaer JG, van der Velden J,

12

Stienen GJ, Linke WA, Laarman GJ, Paulus WJ. Myocardial structure and

13

function differ in systolic and diastolic heart failure. Circulation.

14

2006;113:1966-1973.

15

3.

Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging

16

human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res.

17

1991;68:1560-1568.

18

4.

Babusikova E, Lehotsky J, Dobrota D, Racay P, Kaplan P. Age-associated

23

changes in Ca(2+)-ATPase and oxidative damage in sarcoplasmic reticulum of

rat heart. Physiol Res. 2012;61:453-460.

5.

Gazoti Debessa CR, Mesiano Maifrino LB, Rodrigues de Souza R. Age related

changes of the collagen network of the human heart. Mech Ageing Dev.

2001;122:1049-1058.

6.

Heart J. 2016;37:449-454.

7.

Lakatta EG, Sollott SJ. Perspectives on mammalian cardiovascular aging:

humans to molecules. Comp Biochem Physiol A Mol Integr Physiol.

10

11

Katz AM, Rolett EL. Heart failure: when form fails to follow function. Eur

2002;132:699-721.

8.

Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA,

12

Paulus WJ. Phenotype-Specific Treatment of Heart Failure With Preserved

13

Ejection Fraction: A Multiorgan Roadmap. Circulation. 2016;134:73-90.

14

9.

Matsumoto K, Onishi A, Yamada H, Kusunose K, Suto M, Hatani Y, Matsuzoe

15

H, Tatsumi K, Tanaka H, Hirata KI. Noninvasive Assessment of Preload

16

Reserve Enhances Risk Stratification of Patients With Heart Failure With

17

Reduced Ejection Fraction. Circ Cardiovasc Imaging. 2018;11:e007160.

18

10.

Yamada H, Kusunose K, Nishio S, Bando M, Hotchi J, Hayashi S, Ise T, Yagi

24

S, Yamaguchi K, Iwase T, Soeki T, Wakatsuki T, Sata M. Pre-load stress

echocardiography for predicting the prognosis in mild heart failure. JACC

Cardiovasc Imaging. 2014;7:641-649.

11.

Kusunose K, Yamada H, Nishio S, Tamai R, Niki T, Yamaguchi K, Taketani Y,

Iwase T, Soeki T, Wakatsuki T, Sata M. Interval from the onset of transmitral

flow to annular velocity is a marker of LV filling pressure. JACC Cardiovasc

Imaging. 2013;6:528-530.

12.

Evidence-Based Approach to Help Guide Diagnosis of Heart Failure With

10

11

Reddy YNV, Carter RE, Obokata M, Redfield MM, Borlaug BA. A Simple,

Preserved Ejection Fraction. Circulation. 2018;138:861-870.

13.

Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L,

12

Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru

13

D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU.

14

Recommendations for cardiac chamber quantification by echocardiography in

15

adults: an update from the American Society of Echocardiography and the

16

European Association of Cardiovascular Imaging. J Am Soc Echocardiogr.

17

2015;28:1-39 e14.

18

14.

Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, 3rd, Dokainish H, Edvardsen

25

T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK,

Popescu BA, Waggoner AD. Recommendations for the Evaluation of Left

Ventricular Diastolic Function by Echocardiography: An Update from the

American Society of Echocardiography and the European Association of

Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29:277-314.

15.

dysfunction in cardiac aging. Biochim Biophys Acta. 2015;1847:1424-33.

16.

Olivetti G, Giordano G, Corradi D, Melissari M, Lagrasta C, Gambert SR,

Anversa P. Gender differences and aging: effects on the human heart. J Am Coll

10

11

Tocchi A, Quarles EK, Basisty N, Gitari L, Rabinovitch PS. Mitochondrial

Cardiol. 1995;26:1068-1079.

17.

Cheng S, Fernandes VR, Bluemke DA, McClelland RL, Kronmal RA, Lima

12

JA. Age-related left ventricular remodeling and associated risk for

13

cardiovascular outcomes: the Multi-Ethnic Study of Atherosclerosis. Circ

14

Cardiovasc Imaging. 2009;2:191-198.

15

18.

16

17

18

Lakatta EG. Cardiovascular regulatory mechanisms in advanced age. Physiol

Rev. 1993;73:413-467.

19.

Pieske B, Tschope C, de Boer RA, Fraser AG, Anker SD, Donal E, Edelmann

F, Fu M, Guazzi M, Lam CSP, Lancellotti P, Melenovsky V, Morris DA, Nagel

26

E, Pieske-Kraigher E, Ponikowski P, Solomon SD, Vasan RS, Rutten FH, Voors

AA, Ruschitzka F, Paulus WJ, Seferovic P, Filippatos G. How to diagnose heart

failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a

consensus recommendation from the Heart Failure Association (HFA) of the

European Society of Cardiology (ESC). Eur Heart J. 2019;40:3297-3317.

20.

Kitzman DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan MJ. Exercise

intolerance in patients with heart failure and preserved left ventricular systolic

function: failure of the Frank-Starling mechanism. J Am Coll Cardiol.

1991;17:1065-1072.

10

21.

Fujimoto N, Borlaug BA, Lewis GD, Hastings JL, Shafer KM, Bhella PS,

11

Carrick-Ranson G, Levine BD. Hemodynamic responses to rapid saline

12

loading: the impact of age, sex, and heart failure. Circulation. 2013;127:55-62.

13

22.

14

15

Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Heart

Fail Clin. 2008;4:23-36.

23.

Rommel KP, von Roeder M, Oberueck C, Latuscynski K, Besler C, Blazek S,

16

Stiermaier T, Fengler K, Adams V, Sandri M, Linke A, Schuler G, Thiele H,

17

Lurz P. Load-Independent Systolic and Diastolic Right Ventricular Function in

18

Heart Failure With Preserved Ejection Fraction as Assessed by Resting and

27

Handgrip Exercise Pressure-Volume Loops. Circ Heart Fail. 2018;11:e004121.

24.

Reddy YNV, Obokata M, Egbe A, Yang JH, Pislaru S, Lin G, Carter R, Borlaug

BA. Left atrial strain and compliance in the diagnostic evaluation of heart

failure with preserved ejection fraction. Eur J Heart Fail. 2019;21:891-900.

25.

Backhaus SJ, Lange T, George EF, Hellenkamp K, Gertz RJ, Billing M,

Wachter R, Steinmetz M, Kutty S, Raaz U, Lotz J, Friede T, Uecker M,

Hasenfuss G, Seidler T, Schuster A. Exercise Stress Real-Time Cardiac

Magnetic Resonance Imaging for Noninvasive Characterization of Heart

Failure With Preserved Ejection Fraction: The HFpEF-Stress Trial. Circulation.

10

11

2021;143:1484-1498.

26.

Caiani EG, Corsi C, Zamorano J, Sugeng L, MacEneaney P, Weinert L, Battani

12

R, Gutierrez-Chico JL, Koch R, Perez de Isla L, Mor-Avi V, Lang RM.

13

Improved semiautomated quantification of left ventricular volumes and

14

ejection fraction using 3-dimensional echocardiography with a full matrix-

15

array transducer: comparison with magnetic resonance imaging. J Am Soc

16

Echocardiogr. 2005;18:779-788.

17

28

Figure legends

Figure 1. Stroke volume index and E/e’ plot at baseline and during LPP stress for

each age group and patients with HFpEF.

Each plot represents the mean values. The arrows indicate the changes in these

parameters from those obtained under resting conditions to those obtained during leg-

positive pressure (LPP) stress.

LPP = leg-positive pressure, HFpEF = heart failure with preserved ejection fraction, SVi

= stroke volume index.

10

Figure 2. Representative cases of each age-group and a patient with HFpEF.

11

For a healthy young subject (upper left), the stroke volume index (SVi) increased in

12

response to leg-positive pressure (LPP) stress, while the E/e’ ratio remained unchanged.

13

For middle-aged and elderly subjects (upper right and lower left), SVi increased during

14

LPP stress at the expense of the increase in E/e’. For a patient with HFpEF, SVi failed to

15

increase during LPP stress. The E/e’ ratio dramatically increased in response to LPP

16

stress.

17

LPP = leg-positive pressure, LVOT = left ventricular outflow, TMF = transmitral flow,

18

TDI = tissue Doppler imaging, SVi = stroke volume index, HFpEF = heart failure with

29

preserved ejection fraction.

Figure 3. Schematic presentation of the hemodynamic responses on the Guyton

diagram for each subgroup during acute preload-increasing maneuver.

The difference in hemodynamic responses to the increased preload according to age

groupss and HFpEF are schematically presented in the Guyton diagram.

LPP = leg-positive pressure, LV = left ventricular, HFpEF = heart failure with preserved

ejection fraction.

Table 1. Clinical characteristics of patients with HFpEF

Age, y

76 ± 13

Gender, M/F

10/15

BMI

23 ± 4

H2FPEF score

2.6 ± 1.6

Comorbidities, n (%)

Hypertension

14 (56)

Diabetes mellitus

9 (36)

Dyslipidemia

12 (48)

COPD

5 (20)

Cardiac rhythm

Sinus rhythm, n (%)

Atrial fibrillation, n (%)

23 (92)

2 (8)

NYHA functional class, n (%)

II

19 (76)

III

6 (24)

IV

0 (0)

Medications, n (%)

Loop diuretics

14 (56)

Beta-blockers

14 (56)

Spironolactone

6 (24)

ACE-I/ARBs

14 (56)

Hemoglobin, g/dL

12.1 ± 2.1

B-type natriuretic peptide, pg/mL

eGFR, mL/min/1.73m2

158 (105-262)

55.2 ± 20.6

Data are presented as n, mean ± SD, n (%), or median (interquartile range).

HFpEF, heart failure with preserved ejection fraction; COPD, chronic obstructive lung

disease; NYHA, New York Heart Association; ARB, angiotensin II receptor blocker;

ACE-I, angiotensin converting enzyme-inhibitor; eGFR, estimated glomerular filtration

rate.

Table 2. Baseline characteristics for patients with HFpEF and normal controls from 3 age -groups

Variables

Age, y

Gender, M/F

Young

(N=27)

Middle-age

(N=25)

Elderly

(N=25)

HFpEF

(N=25)

ANOVA

P value

23 ± 4

13/14

52 ± 6*

6/19

77 ± 6*†

12/13

76 ± 13*†

10/15

<0.001

0.14

42 ± 12*

16 ± 5

40 ± 6

69 ± 18

1.7 ± 0.5

0.42 ± 0.09*

63 ± 4

1.1 ± 0.3*

27 ± 5

10 ± 2*

8±2

43 ± 7*

24 ± 4

39 ± 9*

14 ± 4*

37 ± 8

81 ± 21

2.2 ± 0.7*†

0.55 ± 0.10*†

63 ± 5

0.8 ± 0.2*†

31 ± 8*†

6 ± 2*†

10 ± 2*†

47 ± 10*

23 ± 5

43 ± 14*

17 ± 8

43 ± 13

110 ± 31*†‡

2.7 ± 0.9*†‡

0.58 ± 0.18*†

61 ± 7

1.3 ± 0.5*‡

51 ± 18*†

6 ± 2*†

15 ± 5*†‡

48 ± 11*

22 ± 5

<0.001

<0.05

0.11

<0.001

<0.001

<0.001

0.07

<0.001

<0.001

<0.001

<0.001

<0.01

0.18

Echocardiographic characteristics

LV volume index, mL/m2

End-diastole

53 ± 10

End-systole

19 ± 4

LVOT-SVi, mL/m

38 ± 7

LV mass index, g/m

69 ± 17

Mass to volume ratio, g/mL

1.3 ± 0.4

Relative wall thickness

0.33 ± 0.06

LVEF, %

64 ± 3

E/A ratio

2.2 ± 0.7

LAVI, mL/m

19 ± 7

e’ velocity, cm/sec

15 ± 2

E/e’ ratio

6±2

RVFAC, %

34 ± 10

TAPSE, mm

22 ± 4

Data are presented as n, mean ± SD, n (%).

HFpEF, heart failure with preserved ejection fraction; SVi, stroke volume index; LV, left ventricular;

LVOT, left ventricular outflow tract; LA, left atrial; LAVI, left atrial volume index; RVFAC, right

ventricular fractional area change; TAPSE, tricuspid annular plane systolic excursion.

* P<0.05 vs. young group, † P<0.05 vs. middle-aged group, ‡ P<0.05 vs elderly group

Table. 3 Changes in hemodynamic and echocardiographic parameters during leg-positive pressure stress for patients with HFpEF and normal controls

from 3 age -groups

Young (N=27)

Hemodynamics

Systolic BP, mmHg

Diastolic BP, mmHg

HR, bpm

SVi, mL/m2

Middle-aged (N=25)

Elderly (N=25)

HFpEF (N=25)

Baseline

LPP

Baseline

LPP

Baseline

LPP

Baseline

LPP

119 ± 16

69 ± 11

69 ± 11

38 ± 7

107 ± 14*

61 ± 11*

67 ± 10

42 ± 8*

115 ± 17

69 ± 10

70 ± 11

40 ± 6

112 ± 16

69 ± 11

66 ± 10*

44 ± 6*

134 ± 22

76 ± 15

74 ± 15

37 ± 8

125 ± 21*

74 ± 10

69 ± 13*

42 ± 8*

129 ± 25

68 ± 13

71 ± 11

43 ± 13

124 ± 23*

70 ± 18

67 ± 12

44 ± 14

55 ± 9

20 ± 4*

64 ± 4

42 ± 12

16 ± 5

63 ± 4

49 ± 15*

16 ± 6

68 ± 5*

39 ± 9

14 ± 4

63 ± 5

43 ± 7*

15 ± 3

66 ± 4*

43 ± 14

17 ± 8

61 ± 7

47 ± 13*

18 ± 9

63 ± 6

86 ± 14*

39 ± 10

2.3 ± 0.7

21 ± 7*

15 ± 2*

6±1

18 ± 4

37 ± 10

23 ± 5*

16 ± 4

72 ± 18

65 ± 13

1.1 ± 0.3

27 ± 5

10 ± 2

8±2

15 ± 4

43 ± 7

24 ± 4

13 ± 4

75 ± 14

69 ± 14

1.1 ± 0.3

30 ± 6*

9±2

9 ± 3*

15 ± 5

54 ± 6*

25 ± 4*

13 ± 3

61 ± 13

83 ± 17

0.8 ± 0.2

31 ± 8

6±2

10 ± 2

20 ± 7

47 ± 10

23 ± 5

13 ± 4

67 ± 13*

83 ± 15

0.8 ± 0.2*

35 ± 11*

6 ± 1*

12 ± 3*

19 ± 6

54 ± 12*

26 ± 4*

14 ± 4*

84 ± 21

72 ± 26

1.3 ± 0.5

51 ± 18

6 ± 12

15 ± 5

23 ± 6

48 ± 11

22 ± 5

14 ± 5

90 ± 23*

73 ± 27

1.4 ± 0.7*

53 ± 18

6±2

17 ± 7*

24 ± 9

48 ± 9

21 ± 6

15 ± 5

Echocardiographic indices

LV volume index, mL/m2

End-diastole

53 ± 10

End-systole

19 ± 4

LVEF, %

64 ± 3

Transmitral flow parameters

E velocity, cm/sec

81 ± 16

A velocity, cm/sec

39 ± 10

E/A ratio

2.2 ± 0.7

LAVI, mL/m

19 ± 7

e’ velocity, cm/sec

15 ± 2

E/e’ ratio

6±2

TR-PG, mmHg

16 ± 5

RVFAC, %

34 ± 10

TAPSE, mm

22 ± 4

IVC diameter, mm

16 ± 4

Data are presented as mean ± SD.

LPP, leg-positive pressure; BP, blood pressure; HR, heart rate; TR, tricuspid regurgitation; PG, pressure gradient; IVC, inferior vena cava. All other

abbreviations as in Table 1 and 2. *P<0.05 vs. baseline.

Table 4. Univariate and multivariate logistic regression analysis to identify HFpEF

Univariate analysis

OR

95% CI

P value

Clinical variables

Age (per 5 years increase)

Gender (female)

H2FpEF score

1.076

0.957

2.968

1.037-1.160

0.381-2.407

1.828-4.817

<0.001

0.93

<0.001

Baseline echocardiographic variables

SVi (per 5 mL/m2 increase)

LVEDVI (per 5 mL/m2 increase)

LV mass index (per 10 g/m2 increase)

RWT (per 0.05 unit increase)

LVEF (per 5% increase)

LAVI (per 5 mL/m2 increase)

E/e’ (per 5 unit increase)

TAPSE (per 5 mm increase)

1.059

0.986

1.063

1.069

0.880

1.251

1.473

0.941

1.007-1.113

0.949-1.024

1.036-1.109

1.032-1.108

0.793-0.976

1.134-1.379

1.240-1.750

0.846-1.045

0.03

0.47

<0.001

<0.001

0.02

<0.001

<0.001

0.26

Variables during LPP stress

Δ SVi (per 5 mL/m2 increase)

Δ E/e’ (per 5 unit increase)

0.754

1.234

0.644-0.883

1.038-1.468

<0.001

0.02

Variables

Multivariate analysis

OR

95% CI

P value

1.051

1.016-1.087

<0.01

1.480

1.181-1.855

<0.001

0.780

0.646-0.941

<0.01

OR, odds ratio; CI, confidence interval. All other abbreviations as in Table 1, 2 and 3.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る