リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sterile neutrino oscillation studies with the T2K far detector Super-Kamiokande」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sterile neutrino oscillation studies with the T2K far detector Super-Kamiokande

徐, 嘉明 東京大学 DOI:10.15083/0002001519

2021.09.08

概要

There are interesting hints from experiments, like LSND and Daya Bay, which suggest a third mass splitting ∆m2 ∼ 1eV2 in neutrino oscillation. Such results might be explained by the existence of sterile neutrinos, which are present in many extensions of the Standard Model. Sterile neutrinos are neutral singlet fermions which do not participate in the weak interaction, making direct detection difficult. But if eV-scale sterile neutrinos exist, they can affect the oscillation spectra through mixing with the three active neutrinos.

 In the T2K experiment, the high intensity neutrino beam produces large statistics of neutrino events which are useful in searching for sterile neutrino. We utilize the oscillation samples in the far detector Super-Kamiokande (SK) to constrain the sterile mixing parameters under the 3+1 sterile neutrino model (3 active neutrinos + 1 sterile neutrino). In particular, we include the neutral current (NC) interaction samples in the oscillation analysis for the first time to enhance the sterile sensitivity.

 The sterile mixing parameters have different effects on the oscillation spectra. T2K is mostly sensitive to the sterile mixing angles θ24 and θ34. We modify the T2K official fitter to include the sterile oscillation probability and NC oscillation samples. A joint analysis with both the standard charged current (CC) oscillation samples and new NC samples is performed to constrain θ24 and θ34 for a range of ∆m2 . The standard CC samples, νµ disappearance samples (FHC/RHC 1Rµ) and νe appearance samples (FHC/RHC 1Re, FHC νeCC1π+), are sensitive to θ24. The new NC samples, FHC/RHC 2Rπ0 samples (mainly NC1π0 resonant production) and FHC NCγ de-excitation sample (mainly neutral current quasi-elastic (NCQE) events), measure the NC interaction rates of all three active neutrinos, and give us sensitivity on θ24 and θ34.

 Most systematic parameters inherit from the standard 3-flavor analysis. Two cross-section errors and twelve SK detector errors are added to describe the uncertainties on the newly added NC samples. The SK detector uncertainties are calculated based on separate studies, with final state interaction and secondary interaction model uncertainties handled by a reweighting software package.

 The fit goodness is described by a joint likelihood function for all samples:
L(N→ obs, N→ pred, o, f ) = Lsample(N→ obs, N→ pred(o, f )) × Lsyst.(f ),
where Lsample is the binned Poisson likelihood between the number of observed events N→ obs and the number of predicted events N→ pred calculated with oscillation parameters o and systematic pa-rameters f . The systematic penalty Lsyst. is evaluated with the input covariance matrix.

 An Asimov data set (event rates predicted without any statistical or systematic fluctuations) is generated assuming T2K-SK Run1-8 protons on target (POT), with no sterile mixing (except NCγ de-excitation sample, only Run1-4). The expected sensitivity of the sterile mixing parameters are evaluated by fitting the Asimov data.

 Data fits are performed in two sterile parameter planes: sin2 θ24 vs ∆m2 41, and sin2 θ24 vs sin2 θ34. The data fit results are consistent with the Asimov sensitivity. Our constraint on sin2 θ24 is better than existing results for ∆m2 41 < 0.003eV2. However we are not competitive for larger Δm2 41 values, or in the sin2 θ34 constraint. We exclude sin2 θ24 0.1 and sin2 θ34 0.5 at 90% limit for ∆m2 41 > 0.1eV2.

 The current analysis is still statistically limited, and future T2K data will definitely improve our results. On the other hand, the newly added NC cross-section errors (NC1π and NCQE) turn out to be the greatest systematic limitations in the fit. Future cross-section analysis from T2K (or other experiments) might help reduce these errors. Development of additional oscillation samples is in progress, and would provide extra sensitivity upon implementation.

この論文で使われている画像

参考文献

[1] K. Abe et al. (T2K), Phys. Rev. D91, 051102 (2015), arXiv:1410.8811 [hep-ex].

[2] K. Okumura, Physics Procedia 61, 619 (2015), 13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013.

[3] A. Gando et al. (KamLAND Collaboration), Phys. Rev. D 88, 033001 (2013).

[4] J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. Suppl. 165, 400 (2006), arXiv:astro-ph/0511337 [astro-ph] .

[5] G. Bellini et al. (Borexino Collaboration), Phys. Rev. D 82, 033006 (2010).

[6] R. Davis, D. S. Harmer, and K. C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968).

[7] J. N. Abdurashitov et al. (SAGE Collaboration), Phys. Rev. C 80, 015807 (2009).

[8] M. Altmann et al., Physics Letters B 616, 174 (2005).

[9] G. Bellini et al. (Borexino Collaboration), Phys. Rev. Lett. 107, 141302 (2011).

[10] K. Abe et al. (Super-Kamiokande Collaboration), Phys. Rev. D 94, 052010 (2016).

[11] R. Wendell (Super-Kamiokande), Proceedings, 26th International Conference on Neutrino Physics and Astrophysics (Neutrino 2014): Boston, Massachu- setts, United States, June 2-7, 2014, AIP Conf. Proc. 1666, 100001 (2015), arXiv:1412.5234 [hep-ex] .

[12] P. Adamson et al. (NOvA), Phys. Rev. D93, 051104 (2016), arXiv:1601.05037 [hep-ex] .

[13] P. Adamson et al. (MINOS), Phys. Rev. Lett. 112, 191801 (2014), arXiv:1403.0867 [hep-ex] .

[14] M. G. Aartsen et al. (IceCube), Phys. Rev. D91, 072004 (2015), arXiv:1410.7227 [hep-ex] .

[15] L. Haegel (T2K), in 2017 European Physical Society Conference on High Energy Physics (EPS-HEP 2017) Venice, Italy, July 5-12, 2017 (2017) arXiv:1709.04180 [hep-ex] .

[16] F. P. An et al. (Daya Bay), Phys. Rev. D95, 072006 (2017), arXiv:1610.04802 [hep-ex] .

[17] A. Bhardwaj, A. Das, P. Konar, and A. Thalapillil, (2018), arXiv:1801.00797 [hep-ph] .

[18] K. Abe et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 659, 106 (2011).

[19] K. Abe et al. (T2K Collaboration), Phys. Rev. D 87, 012001 (2013).

[20] K. Abe et al. (T2K), Phys.Rev. D96, 092006 (2017), arXiv:1707.01048 [hep-ex].

[21] N. Abgrall et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 637, 25 (2011).

[22] Y. Itow et al. (T2K), in Neutrino oscillations and their origin. Proceedings, 3rd International Workshop, NOON 2001, Kashiwa, Tokyo, Japan, December 508, 2001 (2001) pp. 239–248, arXiv:hep-ex/0106019 [hep-ex] .

[23] K. Abe et al., Nucl. Instrum. Meth. A737, 253 (2014), arXiv:1307.0162 [physics.ins-det] .

[24] Y. Suda, “Search for proton decay using an improved event reconstruction algorithm in super-kamiokande,” Ph.D. Thesis, University of Tokyo, 2017.

[25] S. Tobayama, “An analysis of the oscillation of atmospheric neutrinos,” Ph.D. Thesis, University of British Columbia, 2016.

[26] L. Haegel, “Measurement of neutrino oscillation parameters using neutrino and antineutrino data of the t2k experiment,” Ph.D. Thesis, University of Geneva, 2017.

[27] R. Akutsu et al., T2K-TN-317 (2017).

[28] K. Huang et al., T2K-TN-244 (2016).

[29] K. Ueno, T2K-TN-058 (2012).

[30] J. Imber et al., T2K-TN-326 (2017).

[31] A. Missert, T2K-TN-318 (2017).

[32] P. Adamson et al. (MINOS), Submitted to: Phys. Rev. Lett. (2017), arXiv:1710.06488 [hep-ex] .

[33] P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett. 117, 151803 (2016).

[34] M. G. Aartsen et al. (IceCube Collaboration), Phys. Rev. Lett. 117, 071801 (2016).

[35] K. Abe et al. (Super-Kamiokande), Phys. Rev. D91, 052019 (2015), arXiv:1410.2008 [hep-ex] .

[36] F. Dydak et al., Physics Letters B 134, 281 (1984).

[37] I. E. Stockdale et al., Phys. Rev. Lett. 52, 1384 (1984).

[38] K. B. M. Mahn et al., Phys. Rev. D 85, 032007 (2012).

[39] S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, and E. M. Zavanin, Journal of Physics G: Nuclear and Particle Physics 43, 033001 (2016).

[40] M. G. Aartsen et al. (IceCube), Phys. Rev. D95, 112002 (2017), arXiv:1702.05160 [hep-ex] .

[41] H. Nishino, “Search for nucleon decay into charged antilepton plus meson in super-kamiokande,” Ph.D. Thesis, University of Tokyo, 2009.

[42] T. Mclachlan, “Study of the oscillation of neutrinos and anti-neutrinos and of non-standard neutrino interactions with the atmospheric data in super- kamiokande,” Ph.D. Thesis, University of Tokyo, 2015.

[43] C. Patrignani and P. D. Group, Chinese Physics C 40, 100001 (2016).

[44] P. de Perio et al., T2K-TN-032 (2011).

[45] W. Ma et al., T2K-TN-321 (2017).

[46] F. Reines, C. L. Cowan, F. B. Harrison, A. D. McGuire, and H. W. Kruse, Phys. Rev. 117, 159 (1960).

[47] G. Danby, J.-M. Gaillard, K. Goulianos, L. M. Lederman, N. Mistry, M. Schwartz, and J. Steinberger, Phys. Rev. Lett. 9, 36 (1962).

[48] M. L. Perl et al., Phys. Rev. Lett. 35, 1489 (1975).

[49] K. Kodama et al., Physics Letters B 504, 218 (2001).

[50] B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957).

[51] B. Pontecorvo, Sov. Phys. JETP 7, 172 (1958).

[52] Z. Maki, M. Nakagawa, and S. Sakata, Progress of Theoretical Physics 28, 870 (1962).

[53] M. Nakagawa, H. Okonogi, S. Sakata, and A. Toyoda, Prog. Theor. Phys. 30, 727 (1963).

[54] S. Eliezer and A. R. Swift, Nuclear Physics B 105, 45 (1976).

[55] H. Fritzsch and P. Minkowski, Phys. Lett. B62, 72 (1976).

[56] S. M. Bilenky and B. Pontecorvo, Sov. J. Nucl. Phys. 24, 316 (1976).

[57] S. M. Bilenky and B. Pontecorvo, Lettere Nuovo Cimento 17 (1976) 569-574, In *Pontecorvo, B.: Selected scientific works* 321-326, Lett. Nuovo Cim. 17, 569 (1976).

[58] T. Asaka and M. Shaposhnikov, Phys. Lett. B620, 17 (2005), arXiv:hep- ph/0505013 [hep-ph] .

[59] T. Asaka, S. Blanchet, and M. Shaposhnikov, Phys. Lett. B631, 151 (2005), arXiv:hep-ph/0503065 [hep-ph] .

[60] A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Ann. Rev. Nucl. Part. Sci. 59, 191 (2009), arXiv:0901.0011 [hep-ph] .

[61] Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 89, 011301 (2002).

[62] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 81, 1562 (1998).

[63] K. Eguchi et al. (KamLAND Collaboration), Phys. Rev. Lett. 90, 021802 (2003).

[64] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).

[65] V. Barger, K. Whisnant, and R. J. N. Phillips, Phys. Rev. Lett. 45, 2084 (1980).

[66] S. P. Mikheev and A. Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985).

[67] S. P. Mikheev and A. Yu. Smirnov, Nuovo Cim. C9, 17 (1986).

[68] K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, S. Ohara, Y. Oyama, N. Sato, A. Suzuki, M. Takita, Y. Totsuka, T. Kifune, T. Suda, K. Nakamura, K. Taka- hashi, T. Tanimori, K. Miyano, M. Yamada, E. Beier, L. Feldscher, E. Frank, W. Frati, S. Kim, A. Mann, F. Newcomer, R. V. Berg, W. Zhang, and B. Cor- tez, Physics Letters B 205, 416 (1988).

[69] J. H. Choi et al. (RENO), Phys. Rev. Lett. 116, 211801 (2016), arXiv:1511.05849 [hep-ex] .

[70] Y. Abe et al. (Double Chooz), Journal of High Energy Physics 01, 163 (2016), arXiv:1510.08937 [hep-ex] .

[71] C. Giganti (T2K), in Prospects in Neutrino Physics (NuPhys2017) London, United Kingdom, December 20-22, 2017 (2018) arXiv:1803.11513 [hep-ex] .

[72] P. Adamson et al. (NOvA), Phys. Rev. Lett. 118, 231801 (2017), arXiv:1703.03328 [hep-ex] .

[73] A. Timmons, Adv. High Energy Phys. 2016, 7064960 (2016), arXiv:1511.06178 [hep-ex] .

[74] K. Abe et al. (Super-Kamiokande), Phys. Rev. D97, 072001 (2018), arXiv:1710.09126 [hep-ex] .

[75] K. Abe et al., (2011), arXiv:1109.3262 [hep-ex] .

[76] K. Abe et al. (Hyper-Kamiokande), PTEP 2018, 063C01 (2018), arXiv:1611.06118 [hep-ex] .

[77] R. Acciarri et al. (DUNE), (2016), arXiv:1601.05471 [physics.ins-det] .

[78] P. Minkowski, Physics Letters B 67, 421 (1977).

[79] T. Yanagida, Proceedings: Workshop on the Unified Theories and the Baryon Number in the Universe: Tsukuba, Japan, February 13-14, 1979, Conf. Proc. C7902131, 95 (1979).

[80] M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity Workshop Stony Brook, New York, September 27-28, 1979, Conf. Proc. C790927, 315 (1979), arXiv:1306.4669 [hep-th] .

[81] S. L. Glashow, in Quarks and Leptons, edited by M. L´evy, J.-L. Basdevant, D. Speiser, J. Weyers, R. Gastmans, and M. Jacob (Springer US, Boston, MA, 1980) pp. 687–713.

[82] R. N. Mohapatra and G. Senjanovi´c, Phys. Rev. Lett. 44, 912 (1980).

[83] F. R. Klinkhamer and N. S. Manton, Phys. Rev. D 30, 2212 (1984).

[84] M. Loewenstein, A. Kusenko, and P. L. Biermann, Astrophys. J. 700, 426 (2009), arXiv:0812.2710 [astro-ph] .

[85] A. Boyarsky, D. Malyshev, A. Neronov, and O. Ruchayskiy, Mon. Not. Roy. Astron. Soc. 387, 1345 (2008), arXiv:0710.4922 [astro-ph] .

[86] A. Boyarsky, D. Iakubovskyi, O. Ruchayskiy, and V. Savchenko, Mon. Not. Roy. Astron. Soc. 387, 1361 (2008), arXiv:0709.2301 [astro-ph] .

[87] E. Figueroa-Feliciano et al. (XQC), Astrophys. J. 814, 82 (2015), arXiv:1506.05519 [astro-ph.CO] .

[88] A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, and M. Viel, JCAP 0905, 012 (2009), arXiv:0812.0010 [astro-ph] .

[89] A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, and M. Viel, Phys. Rev. Lett. 102, 201304 (2009), arXiv:0812.3256 [hep-ph] .

[90] E. J. Chun, A. S. Joshipura, and A. Yu. Smirnov, Phys. Rev. D54, 4654 (1996), arXiv:hep-ph/9507371 [hep-ph] .

[91] J. Barry, W. Rodejohann, and H. Zhang, JHEP 07, 091 (2011), arXiv:1105.3911 [hep-ph] .

[92] C.-S. Chen and R. Takahashi, Eur. Phys. J. C72, 2089 (2012), arXiv:1112.2102 [hep-ph] .

[93] A. Kusenko, F. Takahashi, and T. T. Yanagida, Phys. Lett. B693, 144 (2010), arXiv:1006.1731 [hep-ph] .

[94] C. Froggatt and H. Nielsen, Nuclear Physics B 147, 277 (1979).

[95] H. Zhang, Phys. Lett. B714, 262 (2012), arXiv:1110.6838 [hep-ph] .

[96] J. Heeck and H. Zhang, JHEP 05, 164 (2013), arXiv:1211.0538 [hep-ph] .

[97] C. Athanassopoulos et al. (LSND), Phys. Rev. Lett. 77, 3082 (1996), arXiv:nucl-ex/9605003 [nucl-ex] .

[98] A. Aguilar-Arevalo et al. (LSND), Phys. Rev. D64, 112007 (2001), arXiv:hep- ex/0104049 [hep-ex] .

[99] G. Mention et al., Phys. Rev. D83, 073006 (2011), arXiv:1101.2755 [hep-ex] .

[100] J. N. Abdurashitov et al., Phys. Rev. C73, 045805 (2006), arXiv:nucl- ex/0512041 [nucl-ex] .

[101] C. Giunti, M. Laveder, Y. F. Li, Q. Y. Liu, and H. W. Long, Phys. Rev. D86, 113014 (2012), arXiv:1210.5715 [hep-ph] .

[102] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO] .

[103] H. Harari and M. Leurer, Physics Letters B 181, 123 (1986).

[104] A. Palazzo, Modern Physics Letters A 28, 1330004 (2013), arXiv:1302.1102 [hep-ph] .

[105] G. Battistoni, F. Cerutti, A. Fass`o, A. Ferrari, S. Muraro, J. Ranft, S. Roesler, and P. R. Sala, AIP Conference Proceedings 896, 31 (2007), https://aip.scitation.org/doi/pdf/10.1063/1.2720455 .

[106] R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Pa- trick, and L. Urban, GEANT: Detector Description and Simulation Tool; Oct 1994 , CERN Program Library (CERN, Geneva, 1993) long Writeup W5013.

[107] C. Zeitnitz and T. A. Gabriel, in Proceedings of International Conference on Calorimetry in High Energy Physics, edited by F. Elsevier Science B.V., Tal- lahassee.

[108] J. R. A. Fasso, A. Ferrari and P. R. Sala, in Proceedings of International Con- ference on Calorimetry in High Energy Physics.

[109] N. Abgrall et al. (The NA61/SHINE Collaboration), Phys. Rev. C 84, 034604 (2011).

[110] N. Abgrall et al. (NA61/SHINE Collaboration), Phys. Rev. C 85, 035210 (2012).

[111] N. Abgrall et al. (NA61/SHINE Collaboration), The European Physical Jour- nal C 76, 84 (2016).

[112] S. Agostinelli et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250 (2003).

[113] A. Cervera-Villanueva, J. G´omez-Cadenas, and J. Hernando, Nuclear Instru- ments and Methods in Physics Research Section A: Accelerators, Spectrome- ters, Detectors and Associated Equipment 534, 180 (2004), proceedings of the IXth International Workshop on Advanced Computing and Analysis Techni- ques in Physics Research.

[114] R. Brun and F. Rademakers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 389, 81 (1997), new Computing Techniques in Physics Research V.

[115] A. A. Aguilar-Arevalo et al. (MiniBooNE), Nucl. Instrum. Meth. A599, 28 (2009), arXiv:0806.4201 [hep-ex] .

[116] L. Aliaga et al. (MINERvA), Nucl. Instrum. Meth. A743, 130 (2014), arXiv:1305.5199 [physics.ins-det] .

[117] Y. Hayato, Proceedings, 1st International Workshop on Neutrino-nucleus inte- ractions in the few GeV region (NuInt 01): Tsukuba, Japan, December 13-16, 2001, Nucl. Phys. Proc. Suppl. 112, 171 (2002), [,171(2002)].

[118] C. L. Smith, Physics Reports 3, 261 (1972).

[119] R. Smith and E. Moniz, Nuclear Physics B 43, 605 (1972).

[120] O. Benhar and A. Fabrocini, Phys. Rev. C 62, 034304 (2000).

[121] J. Nieves, I. R. Simo, and M. J. V. Vacas, Phys. Rev. C 83, 045501 (2011).

[122] C. H. Albright, C. Quigg, R. E. Shrock, and J. Smith, Phys. Rev. D 14, 1780 (1976).

[123] K. Abe et al., Phys. Rev. Lett. 56, 1107 (1986).

[124] D. Rein and L. M. Sehgal, Annals of Physics 133, 79 (1981).

[125] M. Glu¨ck, E. Reya, and A. Vogt, The European Physical Journal C - Particles and Fields 5, 461 (1998).

[126] A. Bodek and U. K. Yang, in 2nd International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt 02) Irvine, California, December 12-15, 2002 (2003) arXiv:hep-ex/0308007 [hep-ex] .

[127] P. Musset and J.-P. Vialle, Physics Reports 39, 1 (1978).

[128] J. E. Kim, P. Langacker, M. Levine, and H. H. Williams, Rev. Mod. Phys. 53, 211 (1981).

[129] T. Sjostrand, (1994), arXiv:hep-ph/9508391 [hep-ph] .

[130] S. Barlag et al. (Amsterdam-Bologna-Padua-Pisa-Saclay-Turin), Z. Phys. C11, 283 (1982), [Erratum: Z. Phys.C14,281(1982)].

[131] D. Rein and L. M. Sehgal, Nuclear Physics B 223, 29 (1983).

[132] R. Gran, J. Nieves, F. Sanchez, and M. J. V. Vacas, Phys. Rev. D 88, 113007 (2013).

[133] R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954).

[134] L. Salcedo, E. Oset, M. Vicente-Vacas, and C. Garcia-Recio, Nuclear Physics A 484, 557 (1988).

[135] K. Nakamura and P. D. Group, Journal of Physics G: Nuclear and Particle Physics 37, 075021 (2010).

[136] H. W. Bertini, Phys. Rev. C6, 631 (1972).

[137] S. J. Lindenbaum and R. M. Sternheimer, Phys. Rev. 105, 1874 (1957).

[138] O. Benhar, N. Farina, H. Nakamura, M. Sakuda, and R. Seki, Phys. Rev. D 72, 053005 (2005).

[139] A. M. Ankowski, O. Benhar, T. Mori, R. Yamaguchi, and M. Sakuda, Phys. Rev. Lett. 108, 052505 (2012).

[140] O. Benhar, A. Fabrocini, S. Fantoni, and I. Sick, Nuclear Physics A 579, 493 (1994).

[141] B. Frois and I. Sick, Modern topics in electron scattering (World Scientific, 1991).

[142] M. Leuschner, J. R. Calarco, F. W. Hersman, E. Jans, G. J. Kramer, L. Lapik´as, G. van der Steenhoven, P. K. A. de Witt Huberts, H. P. Blok, N. Kalantar-Nayestanaki, and J. Friedrich, Phys. Rev. C 49, 955 (1994).

[143] F. Ajzenberg-Selove, Nuclear Physics A 523, 1 (1991).

[144] K. Kobayashi et al., (2006), arXiv:nucl-ex/0604006 [nucl-ex] .

[145] M. Yosoi et al., Nuclear Physics A 738, 451 (2004), proceedings of the 8th International Conference on Clustering Aspects of Nuclear Structure and Dy- namics.

[146] M. Yosoi, H. Akimune, I. Daito, H. Ejiri, H. Fujimura, M. Fujiwara, K. Hara, K. Hara, T. Ishikawa, M. Itoh, et al., Physics of Atomic Nuclei 67, 1810 (2004).

[147] M. Smy (SUPER–KAMIOKANDE), in Proceedings, 30th International Cosmic Ray Conference (ICRC 2007): Merida, Yucatan, Mexico, July 3-11, 2007 , Vol. 5 (2007) pp. 1279–1282.

[148] E. Wang, L. Alvarez-Ruso, Y. Hayato, K. Mahn, and J. Nieves, Phys. Rev. D 92, 053005 (2015).

[149] C. Berger and L. M. Sehgal, Phys. Rev. D 79, 053003 (2009).

[150] R. Wendell, “Prob3++ software for computing three flavor neutrino oscillation probabilities,” (2012).

[151] V. Barger, K. Whisnant, S. Pakvasa, and R. J. N. Phillips, Phys. Rev. D 22, 2718 (1980).

[152] A. M. Dziewonski and D. L. Anderson, Physics of the Earth and Planetary Interiors 25, 297 (1981).

[153] G. M. Radecky, V. E. Barnes, D. D. Carmony, A. F. Garfinkel, M. Derrick, E. Fernandez, L. Hyman, G. Levman, D. Koetke, B. Musgrave, P. Schreiner, R. Singer, A. Snyder, S. Toaff, S. J. Barish, A. Engler, R. W. Kraemer, K. Mil- ler, B. J. Stacey, R. Ammar, D. Coppage, D. Day, R. Davis, N. Kwak, and R. Stump, Phys. Rev. D 25, 1161 (1982).

[154] M. Derrick, E. Fernandez, L. Hyman, G. Levman, D. Koetke, B. Musgrave, P. Schreiner, R. Singer, A. Snyder, S. Toaff, S. J. Barish, A. Engler, R. W. Kraemer, B. J. Stacey, R. Ammar, D. Coppage, D. Day, R. Davis, N. Kwak, R. Stump, V. E. Barnes, D. D. Carmony, A. F. Garfinkel, and G. M. Radecky, Phys. Rev. D 23, 569 (1981).

[155] T. Kitagaki, H. Yuta, S. Tanaka, A. Yamaguchi, K. Abe, K. Hasegawa, K. Ta- mai, S. Kunori, Y. Otani, H. Hayano, H. Sagawa, K. Akatsuka, K. Furuno, N. J. Baker, A. M. Cnops, P. L. Connolly, S. A. Kahn, H. G. Kirk, M. J. Murtagh, R. B. Palmer, N. P. Samios, M. Tanaka, M. Higuchi, and M. Sato, Phys. Rev. D 34, 2554 (1986).

[156] N. J. Baker, A. M. Cnops, P. L. Connolly, S. A. Kahn, M. J. Murtagh, R. B. Palmer, N. P. Samios, and M. Tanaka, Phys. Rev. D 23, 2495 (1981).

[157] K. Furuno, A. Suzuki, T. Kitagaki, M. Etou, H. Sagawa, K. B. McCon- nel Mahn, E. J. Jeon, and M. Sakuda, in 2nd International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt 02) Irvine, Ca- lifornia, December 12-15, 2002 (2003).

[158] C. Bronner et al., T2K-TN-161 (2013).

[159] P. de Perio et al., T2K-TN-113 (2012).

[160] P. A. Rodrigues, Proceedings, 8th International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt 12): Rio de Janeiro, Brazil, Octo- ber 22-27, 2012, AIP Conf. Proc. 1663, 030006 (2015), arXiv:1402.4709 [hep-ex] .

[161] A. M. Ankowski, M. B. Barbaro, O. Benhar, J. A. Caballero, C. Giusti, R. Gonz´alez-Jim´enez, G. D. Megias, and A. Meucci, Phys. Rev. C92, 025501 (2015), arXiv:1506.02673 [nucl-th] .

[162] A. M. Ankowski, 8th International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt 12) Rio de Janeiro, Brazil, October 22-27, 2012, AIP Conf. Proc. 1663, 080002 (2015), arXiv:1304.4714 [hep-ph] .

[163] A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. D 82, 092005 (2010).

[164] J. O. Johnson and T. A. Gabriel, (1987), 10.2172/6080059.

[165] J. Johnson and T. Gabriel, 10.2172/5567506.

[166] W. Coleman and T. Armstrong, 10.2172/4096131.

[167] S. S. Wilks, Ann. Math. Statist. 9, 60 (1938).

[168] K. A. Olive et al. (Particle Data Group. Berkeley), Chin. Phys. C 38, 090001 (2014), all tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

[169] Y. Koshio et al., RCNP Experiment E487 (2016).

[170] A. Blondel, M. Yokoyama, and M. Zito (T2K Collaboration), The T2K-ND280 upgrade proposal , Tech. Rep. CERN-SPSC-2018-001. SPSC-P-357 (CERN, Ge-neva, 2018) this proposal is the follow-up of the Expression of Interest EOI-15 submitted to SPSC in January 2017.

[171] M. Antonova et al., Proceedings, 2017 International Workshop on Neu- trinos from Accelerators (NuFact17): Uppsala University Main Building, Uppsala, Sweden, September 25-30, 2017, PoS NuFact2017, 078 (2018), arXiv:1704.08079 [physics.ins-det] .

[172] S. Aoki et al. (The NINJA Collaboration), “Proposal for precise measurement of neutrino-water cross-section in ninja physics run,” P71, Proposal for the 25th J-PARC PAC meeting.

[173] S. Bhadra et al. (nuPRISM), (2014), arXiv:1412.3086 [physics.ins-det] .

[174] S. Bhadra et al., “Proposal for the nuprism experiment in the j-parc neutrino beamline,” P61, Proposal for the 22th J-PARC PAC meeting.

[175] C. Andreopoulos et al., (2016), arXiv:1606.08114 [physics.ins-det] .

[176] K. Abe et al. (Hyper-Kamiokande), (2018), arXiv:1805.04163 [physics.ins-det].

[177] E. R. Davies, Machine vision: theory, algorithms, practicalities (Elsevier, 2004).

[178] M. Wallraff and C. Wiebusch, Comput. Phys. Commun. 197, 185 (2015), arXiv:1409.1387 [astro-ph.IM] .

[179] F. P. An et al. (Daya Bay Collaboration), Phys. Rev. Lett. 117, 151802 (2016).

[180] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).

[181] X. Qian, A. Tan, J. J. Ling, Y. Nakajima, and C. Zhang, Nucl. Instrum. Meth. A827, 63 (2016), arXiv:1407.5052 [hep-ex] .

[182] L. Lyons, Ann. Appl. Stat. 2, 887 (2008).

参考文献をもっと見る