リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Study of Neutrons Associated with Neutrino and Antineutrino Interactions on the Water Target at the T2K Far Detector」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Study of Neutrons Associated with Neutrino and Antineutrino Interactions on the Water Target at the T2K Far Detector

阿久津, 良介 東京大学 DOI:10.15083/0002004665

2022.06.22

概要

Introduction
Neutrinos are accommodated by the Standard Model of particle physics. Although there have been remarkable efforts, their nature has not been fully understood yet since they interact extremely weakly with other particles. Understanding of one of the unknown nature, charge-parity violating phase in the lepton sector, would provide information that may explain the imbalance of matter and antimatter in the universe. Since neutrinos are the second most dominant particles, they may deliver unique information about the evolution of the universe. To address such information, further improvements to analysis methods are needed.
 In future experiments employing water Cherenkov detectors, it can be quite valuable to utilize neutrons associated with neutrino interactions in water. Utilization of such neutrons are expected to improve their physics analysis methods. These neutrons are produced via the three processes: primary ν-nucleon interaction in the target nucleus, hadronic final-state interaction inside the nu- cleus, and hadronic secondary interaction in detector medium. Figure 1 shows a schematic drawing of the neutron production by these processes. Although a precise prediction of the neutron pro- duction by a Monte Carlo (MC) simulation is essential for these analyses, current MC simulations, however, produce different predictions due to all the three processes. In addition, no extensive study has been made for water. Therefore, it is quite worth studying those neutrons and evaluating the validity of the simulations by using well understood neutrino source. This thesis presents the first measurement of those neutrons for accelerator neutrinos and antineutrinos at the T2K far detector.

The T2K experiment
The Tokai-to-Kamioka (T2K) experiment is a long-baseline ν oscillation experiment in Japan. It uses a primarily νµ (ν¯µ) beam produced at J-PARC, with a peak energy of 0.6 GeV. The beam neu- trinos are detected by the Super-Kamiokande (SK) far detector, which is a 50 kton water Cherenkov detector located 295 km away from the beam source in order to study neutrino oscillations. Since the far detector is capable of tagging neutrons, the observed beam-neutrino events can also be used to study neutron production associated with neutrino interactions in water.
 T2K has completed the Run 1-9 data taking periods since the beginning of the data taking. In this thesis, all the Run 1-9 data corrected at the far detector, i.e. 14.938×1020 Protons On Target (POT) for the forward horn current (FHC) mode/ 16.346×1020 POT for the reverse horn current (RHC) mode are analyzed.

Development of neutron tagging algorithm
In the far detector, neutrons associated with neutrino interactions are quickly thermalized after they are produced, and are eventually captured by hydrogen nucleus with a typical timescale of 200 µs via the reaction:

n + H → d + γ (2.2MeV). (0.0.1)

Since the capture produces a single 2.2 MeV γ ray, neutrons can be tagged by detecting the γ rays.
 In this thesis, a neutron tagging algorithm is developed and is designed so that particular simulation dependence of neutron tagging efficiency is minimized as much as possible. The algorithm consists of two selection stages: the primary neutron candidate selection and the neural network classification. In the primary selection, neutron candidates are selected based on cluster of signals from photomultiplier tubes (PMT) in time. After the selection, there are numerous background events which are caused by accidental coincidences of random noise of PMTs. In order to remove efficiently these background events from the selected candidates, an artificial neural network with a set of 14 feature variables is used. The resultant neutron tagging efficiency and background event rate after the two selection stages are ∼20% and 0.018, respectively.

Analysis sample
In this thesis, neutrons associated with neutrino interactions on water target are studied. It is therefore important to use ν event sample which is well known, studied, and established in terms of neutrino interaction cross sections and neutrino fluxes. For this purpose, the FHC and RHC 1R νµ samples used for the T2K oscillation analyses are used with a different definition of fiducial volume. The samples mainly consist of Charged Current (CC) Quasi-Elastic interaction and contain a high purity of νµ and ν¯µ events for FHC mode and RHC mode, respectively.
 Since neutrons produced near the inner wall of the far detector can escape from it before they are captured, a smaller fiducial volume compared to the one used in the T2K ν oscillation analyses is adopted.

The first application of neutron tagging to the T2K data
The neutron tagging algorithm is applied to the FHC and RHC 1Rνµ samples. This is the first time to apply the neutron tagging technique to the T2K data. For each ν event in the 1Rνµ samples, the algorithm is applied on an even-by-event basis.
 Table 1 summarizes the number of observed neutrino events and number of tagged neutrons with the corresponding MC expectations. The observed neutrino events agree well with the expectations. On the one hand, for the tagged neutrons, the observation shows less tagged neutrons than that of expectations.
 Table 1: Summary of the number of neutrino events and tagged neutrons for the Runs 1-9 POT with the following oscillation parameter values: ∆m221 =7.53 ×10−5 eV2, ∆m232 =2.452 ×10−3 eV2,
sin2 θ23=0.532, sin2 θ13=0.0212, δCP =-1.885, Mass Hierarchy = normal. All the expectations are normalized by the Run 1-9 POT.

Measurement of mean neutron multiplicity
Mean neutron multiplicity
Using the Run 1-9 FHC and RHC 1Rνµ samples and the neutron tagging algorithm, mean neutron multiplicity is measured. Neutron multiplicity is expected to become large as the four momentum transfer squared Q2 to the hadronic system at the primary ν-nucleus interaction increases. Since the direction of the beam neutrino is known, reconstructed muon transverse momentum Pt, which is a good indicator of Q2, can be calculated. This analysis therefore measures the mean neutron multiplicity as a function of Pt given as:

M¯ i = 1/εi × ( Ntag,i − b × N1µ,i) /N1µ,i ,

where i represents i-th Pt bin, Ntag,i = ∑N1µ,i j=1 mij , N1µ,iis number of observed 1Rνµ events, mij is number of tagged neutrons of j-th 1Rνµ event, b is accidental background event rate of the neutron tagging, and εi is neutron tagging efficiency.
 It should be noted that this mean neutron multiplicity includes all the contributions from hadronic FSI and hadronic SI as well as primary neutrino-nucleus interaction.

Estimation of systematic uncertainties
Since the accidental background event rate is derived from T2K dummy spill data, only systematic uncertainties on the neutron tagging efficiency is considered. The considered systematic uncertain-ties are divided into 12 categories. Impacts of most systematic uncertainties are estimated to be very small. Systematic sources which affect neutron simulation, notably due to nucleon secondary interactions, and detector response for 2.2 MeV γ ray are estimated to be large. Total systematic uncertainty on neutron tagging efficiency is ∼8 %. Total systematic uncertainty on the averaged neutron tagging efficiency is estimated to be ∼8%.

Result
Figure 2 shows the measurement results in comparison to the expectations for three neutrino-nucleus MC event generators: GENIE, NEUT, and NuWro. As shown in the figure, the measured averaged mean multiplicity shows a tendency that the RHC sample has higher mean multiplicity than that of the FHC sample. Since in general CC ν¯µ interactions produce more neutrons compared to CC νµ interactions, the observed tendency is consistent with the expectation.

The measured mean neutron multiplicity averaged over Pt is:

 Runs 1 − 9 FHC 1Rνµ sample : 1.00 ± 0.17 (stat.) +0.07 -0.08 (syst.) neutrons/ν event
 Runs 5 − 9 RHC 1Rνµ sample : 1.40 ± 0.26 (stat.) +0.10 -0.11 (syst.) neutrons/ν event,

whereas the corresponding expectations of the NEUT-based MC are:

FHC 1Rνµ sample : 1.50 ± 0.02 (stat.) neutrons/ν event
RHC 1Rνµ sample : 2.14 ± 0.02 (stat.) neutrons/ν event.

The deviation from the expectation is 2.75 σ (2.69 σ) for the FHC (RHC) sample based on the total error of the measured value. This is the first measurement of neutrons associated with neutrino interaction in water for accelerator neutrinos and antineutrinos.

参考文献

[1] K. Abe et al. Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations. arXiv (submitted for publication), 2019.

[2] Sheldon Stone. New physics from flavour. PoS, ICHEP2012:033, 2013.

[3] A.Himmel. First Oscillation Results with Neutrino and Antineutrino Beams in NOvA. Fermilab JETP (Wine & Cheese) Seminar, June 2019.

[4] G L Fogli, E Lisi, A Mirizzi, and D Montanino. Probing supernova shock waves and neutrino flavour transitions in next-generation water cherenkov detectors. Journal of Cosmology and Astroparticle Physics, 2005(04):002–002, apr 2005.

[5] Ken’ichiro Nakazato et al. SPECTRUM OF THE SUPERNOVA RELIC NEU- TRINO BACKGROUND AND METALLICITY EVOLUTION OF GALAX- IES. The Astrophysical Journal, 804(1):75, may 2015.

[6] M. Ikeda et al. Evaluation of gadolinium’s action on water cherenkov detector systems with egads. arXiv (submitted for publication), 2019.

[7] P.F.Menendez. Neutrino Physics in Present and Future Kamioka Water- Cerenkov Detectors with Neutron Tagging. Ph.D thesis, University Au- tonomous of Madrid, 2017.

[8] S.Ando. Cosmic star formation history and the future observation of supernova relic neutrinos. The Astrophysical Journal, 607(1):20–31, may 2004.

[9] S. Ando, K. Sato, and T. Totani. Detectability of the supernova relic neutrinos and neutrino oscillation. Astroparticle Physics, 18(4):307 – 318, 2003.

[10] K.Ueno. Study of neutral-current de-excitation gamma-rays with the T2K neutrino beam. PhD thesis, University of Tokyo, 2014.

[11] C. Andreopoulos et al. The genie neutrino monte carlo generator. Nucl. In- strum. Meth. A, 614(1):87 – 104, 2010.

[12] S. Agostinelli et al. Geant4̶a simulation toolkit. Nucl. Instrum. Meth. A, 506(3):250 – 303, 2003.

[13] B. Aharmim et al. Measurement of neutron production in atmospheric neutrino interactions at the sudbury neutrino observatory. Phys. Rev. D, 99:112007, 2019.

[14] M. Elkins et al. Neutron measurements from antineutrino hydrocarbon reac- tions. Phys. Rev. D, 100:052002, 2019.

[15] K. Abe et al. Characterization of nuclear effects in muon-neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charged-current pionless interactions at t2k. Phys. Rev. D, 98:032003, Aug 2018.

[16] K. Abe et al. The t2k experiment. Nucl. Instrum. Meth. A, 659, 2011.

[17] K. Abe et al. T2k neutrino flux prediction. Phys. Rev. D, 87:012001, Jan 2013.

[18] S. Fukuda et al. The super-kamiokande detector. Nucl. Instrum. Meth. A, 501(2):418 – 462, 2003.

[19] S. Yamada et al. S. Yamada, et al., in: 16th IEEE-NPSS Real Time Conference Proceedings, 2009, p. 201.

[20] K. Iyogi et al. T2K data acquisition and FC event selection at Super- Kamiokande. T2K-TN-27 (internal note), 2011.

[21] K. Abe et al. Calibration of the super-kamiokande detector. Nucl. Instrum. Meth. A, 737, 2014.

[22] Y.Zhang. Experimental Studies of Supernova Relic Neutrinos at Super- Kamiokande-IV. PhD thesis, Tsinghua University, 2015.

[23] K. Abe and other. Solar neutrino measurements in super-kamiokande-iv. Phys. Rev. D, 94:052010, Sep 2016.

[24] L.Haegel. Measurement Of Neutrino Oscillation Parameters Using Neutrino And Antineutrino Data Of The T2K Experiment. Ph.D thesis, University of Geneva, 2017.

[25] T.Golan. Modeling nuclear effects in NuWro Monte Carlo neutrino event gen- erator. Ph.D thesis, University of Wroclaw, 2014.

[26] Patrick de Perio. Neut pion fsi. AIP Conference Proceedings, 1405(1):223–228, 2011.

[27] C. Zeitnitz and T.A. Gabriel. THE GEANT-CALOR INTERFACE USER’S GUIDE, Oak Ridge National Laboratory, 2001.

[28] S.Tobayama. An Analysis of the Oscillation of Atmospheric Neutrinos. PhD thesis, Uniertsity of British Columbia, 2016.

[29] S. Berkman et al. fiTQun: A New Reconstruction Algorithm for Super-K. T2K-TN-146 (internal note), 2013.

[30] K. Nakamura. Measurement of Neutrino Oscillation with a High Intensity Neutrino Beam. Ph.D thesis, Kyoto University, 2018.

[31] R. Akutsu et al. Super-Kamiokande data quality for T2K Run 9. T2K-TN-355 (internal note), 2018.

[32] R.J.Edward. High Pressure Xenon Detectors for Rare Physics Searches. Ph.D thesis, University of California, Berkeley, 2014.

[33] T. Vladisavljevic et al. Flux Prediction and Uncertainty with NA61/SHINE 2009 Replica-Target Data. T2K-TN-354 (internal note), 2017.

[34] M. Tanabashi et al. Review of particle physics. Phys. Rev. D, 98:030001, Aug 2018.

[35] K.A. Olive. Review of particle physics. Chinese Physics C, 40(10):100001, oct 2016.

[36] C. Andreopoulos et al. T2K Neutrino and Anti-Neutrino 3-Flavour Joint Anal- ysis of Run 1-9 data sets. T2K-TN-360 (internal note), 2019.

[37] D. Cokinos and E. Melkonian. Measurement of the 2200m/sec neutron-proton capture cross section. Phys. Rev. C, 15:1636, 1977.

[38] Andreopoulos et al. The GENIE Neutrino Monte Carlo Generator: Physics and User Manual. 2015.

[39] W. Pauli. Letter of the 4th december 1930. Pauli Archive at CERN.

[40] C. L. Cowan, F. Reines, F. B. Harrison, H. W. Kruse, and A. D. McGuire. Detection of the free neutrino: a confirmation. Science, 124(3212):103–104, 1956.

[41] Raymond Davis, Jr. and Don S. Harmer. Attempt to observe the Cl37(ν¯e−)Ar37 reaction induced by reactor antineutrinos. Bull. Am. Phys. Soc., 4:217, 1959.

[42] T. D. Lee and C. N. Yang. Parity nonconservation and a two-component theory of the neutrino. Phys. Rev., 105:1671–1675, Mar 1957.

[43] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson. Experimental test of parity conservation in beta decay. Phys. Rev., 105:1413– 1415, Feb 1957.

[44] Richard L. Garwin, Leon M. Lederman, and Marcel Weinrich. Observations of the failure of conservation of parity and charge conjugation in meson decays: the magnetic moment of the free muon. Phys. Rev., 105:1415–1417, Feb 1957.

[45] M. Goldhaber, L. Grodzins, and A. W. Sunyar. Helicity of neutrinos. Phys. Rev., 109:1015–1017, Feb 1958.

[46] R. P. Feynman and M. Gell-Mann. Theory of the fermi interaction. Phys. Rev., 109:193–198, Jan 1958.

[47] E. C. G. Sudarshan and R. E. Marshak. Chirality invariance and the universal fermi interaction. Phys. Rev., 109:1860–1862, Mar 1958.

[48] G. Danby, J-M. Gaillard, K. Goulianos, L. M. Lederman, N. Mistry, M. Schwartz, and J. Steinberger. Observation of high-energy neutrino reac- tions and the existence of two kinds of neutrinos. Phys. Rev. Lett., 9:36–44, Jul 1962.

[49] Sheldon L. Glashow. Partial-symmetries of weak interactions. Nuclear Physics, 22(4):579 – 588, 1961.

[50] A. Salam. Weak and Electromagnetic Interactions. Conf. Proc., C680519:367– 377, 1968.

[51] S. Weinberg. A model of leptons. Phys. Rev. Lett., 19:1264–1266, Nov 1967.

[52] O. W. Greenberg. Spin and unitary-spin independence in a paraquark model of baryons and mesons. Phys. Rev. Lett., 13:598–602, Nov 1964.

[53] M. Y. Han and Y. Nambu. Three-triplet model with double SU(3) symmetry. Phys. Rev., 139:B1006–B1010, Aug 1965.

[54] M. L. Perl et al. Evidence for anomalous lepton production in e+ e− annihi- lation. Phys. Rev. Lett., 35:1489–1492, Dec 1975.

[55] G. S. Abrams et al. Initial measurements of z-boson resonance parameters in e+e− annihilation. Phys. Rev. Lett., 63:724–727, Aug 1989.

[56] D. DeCamp et al. Determination of the number of light neutrino species. Physics Letters B, 231(4):519 – 529, 1989.

[57] P. Aarnio et al. Measurement of the mass and width of the z0-particle from multihadronic final states produced in e+e - annihilations. Physics Letters B, 231(4):539 – 547, 1989.

[58] B. Adeva et al. A determination of the properties of the neutral intermediate vector boson z0. Physics Letters B, 231(4):509 – 518, 1989.

[59] K. Kodama et al.

[60] Raymond Davis, Don S. Harmer, and Kenneth C. Hoffman. Search for neutri- nos from the sun. Phys. Rev. Lett., 20:1205–1209, 1968.

[61] John N. Bahcall, Neta A. Bahcall, and Giora Shaviv. Present status of the theoretical predictions for the 37Cl solar-neutrino experiment. Phys. Rev. Lett., 20:1209–1212, 1968.

[62] K. S. Hirata et al. Observation of 8B solar neutrinos in the kamiokande-ii detector. Phys. Rev. Lett., 63:16–19, Jul 1989.

[63] A. I. Abazov et al. Search for neutrinos from the sun using the reaction — 71 71Ga(νe ,e ) ge. Phys. Rev. Lett., 67:3332–3335, 1991.

[64] W. Hampel et al. Gallex solar neutrino observations: results for gallex iv. Physics Letters B, 447(1):127 – 133, 1999.

[65] M. Altmann et al. Gno solar neutrino observations: results for gno i. Physics Letters B, 490(1):16 – 26, 2000.

[66] S. Fukuda et al. Determination of solar neutrino oscillation parameters using 1496 days of super-kamiokande-i data. Physics Letters B, 539(3):179 – 187, 2002.

[67] Q. R. Ahmad et al. Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory. Phys. Rev. Lett., 89:011301, Jun 2002.

[68] K.S. Hirata and othres. Experimental study of the atmospheric neutrino flux. Physics Letters B, 205(2):416 – 420, 1988.

[69] Y. Fukuda et al. Atmospheric νµ/νe ratio in the multi-gev energy range. Physics Letters B, 335(2):237 – 245, 1994.

[70] R. Becker-Szendy et al. Electron- and muon-neutrino content of the atmo- spheric flux. Phys. Rev. D, 46:3720–3724, 1992.

[71] W.W.M. Allison et al. Measurement of the atmospheric neutrino flavour com- position in soudan 2. Physics Letters B, 391(3):491 – 500, 1997.

[72] Y. Fukuda et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett., 81:1562–1567, Aug 1998.

[73] M. H. Ahn et al. Measurement of neutrino oscillation by the k2k experiment. Phys. Rev. D, 74:072003, Oct 2006.

[74] N. Agafonova et al. Final results of the opera experiment on ντ appearance in the cngs neutrino beam. Phys. Rev. Lett., 120:211801, May 2018.

[75] B. Pontecorvo. Mesonium and anti-mesonium. Sov. Phys. JETP, 6:429, 1957. [Zh. Eksp. Teor. Fiz.33,549(1957)].

[76] Ziro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the Unified Model of Elementary Particles. Progress of Theoretical Physics, 28(5):870–880, 11 1962.

[77] K.A. Olive. Review of particle physics. Chinese Physics C, 38(9):090001, aug 2014.

[78] L. Wolfenstein. Neutrino oscillations in matter. Phys. Rev. D, 17:2369–2374, May 1978.

[79] S. P. Mikheyev and A. Yu. Smirnov. Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos. Sov. J. Nucl. Phys., 42:913–917, 1985. [,305(1986)].

[80] V. Barger, K. Whisnant, S. Pakvasa, and R. J. N. Phillips. Matter effects on three-neutrino oscillations. Phys. Rev. D, 22:2718–2726, Dec 1980.

[81] Bruce T. Cleveland et al. Measurement of the solar electron neutrino flux with the homestake chlorine detector. The Astrophysical Journal, 496(1):505–526, mar 1998.

[82] G. Bellini et al. Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 mev energy threshold in the borexino detector. Phys. Rev. D, 82:033006, Aug 2010.

[83] J. Hosaka et al. Solar neutrino measurements in super-kamiokande-i. Phys. Rev. D, 73:112001, Jun 2006.

[84] T. Araki et al. Measurement of neutrino oscillation with kamland: Evidence of spectral distortion. Phys. Rev. Lett., 94:081801, Mar 2005.

[85] K. Abe et al. Atmospheric neutrino oscillation analysis with external con- straints in super-kamiokande i-iv. Phys. Rev. D, 97:072001, Apr 2018.

[86] M. G. Aartsen et al. Measurement of atmospheric neutrino oscillations at 6–56 gev with icecube deepcore. Phys. Rev. Lett., 120:071801, Feb 2018.

[87] K. Abe et al. Measurement of neutrino oscillation parameters from muon neutrino disappearance with an off-axis beam. Phys. Rev. Lett., 111:211803, Nov 2013.

[88] K. Abe et al. Precise measurement of the neutrino mixing parameter θ23 from muon neutrino disappearance in an off-axis beam. Phys. Rev. Lett., 112:181801, May 2014.

[89] K. Abe et al. Measurements of neutrino oscillation in appearance and disap- pearance channels by the t2k experiment with 6.6 1020 protons on target. Phys. Rev. D, 91:072010, Apr 2015.

[90] P. Adamson et al. First measurement of muon-neutrino disappearance in nova. Phys. Rev. D, 93:051104, Mar 2016.

[91] P. Adamson et al. Measurement of the neutrino mixing angle θ23 in nova. Phys. Rev. Lett., 118:151802, Apr 2017.

[92] M. A. Acero et al. New constraints on oscillation parameters from νe appear- ance and νµ disappearance in the nova experiment. Phys. Rev. D, 98:032012, Aug 2018.

[93] P. Adamson et al. Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in minos. Phys. Rev. Lett., 110:251801, Jun 2013.

[94] K. Abe et al. Indication of electron neutrino appearance from an accelerator- produced off-axis muon neutrino beam. Phys. Rev. Lett., 107:041801, Jul 2011.

[95] F. P. An et al. Observation of electron-antineutrino disappearance at daya bay. Phys. Rev. Lett., 108:171803, Apr 2012.

[96] J. K. Ahn et al. Observation of reactor electron antineutrinos disappearance in the reno experiment. Phys. Rev. Lett., 108:191802, May 2012.

[97] Y. Abe et al. Indication of reactor νe disappearance in the double chooz experiment. Phys. Rev. Lett., 108:131801, Mar 2012.

[98] K. Abe et al. Observation of electron neutrino appearance in a muon neutrino beam. Phys. Rev. Lett., 112, 2014.

[99] A. D. Sakharov. Violation of CP Invariance, C asymmetry, and baryon asym- metry of the universe. Pisma Zh. Eksp. Teor. Fiz., 5:32–35, 1967. [Usp. Fiz. Nauk161,no.5,61(1991)].

[100] Nicola Cabibbo. Unitary symmetry and leptonic decays. Phys. Rev. Lett., 10:531–533, Jun 1963.

[101] Makoto Kobayashi and Toshihide Maskawa. CP-Violation in the Renormaliz- able Theory of Weak Interaction. Progress of Theoretical Physics, 49(2):652– 657, 02 1973.

[102] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay. Evidence for the 2π decay of the k0 meson. Phys. Rev. Lett., 13:138–140, Jul 1964.

[103] R. Aaij et al. Measurement of matter ‒ antimatter differences in beauty baryon decays. Nature Phys, 13, 2017.

[104] M. Fukugita and T. Yanagida. Barygenesis without grand unification. Physics Letters B, 174(1):45 – 47, 1986.

[105] M. A. Acero et al. First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by nova. Phys. Rev. Lett., 123:151803, Oct 2019.

[106] A Yu Smirnov. Neutrino mass and new physics. Journal of Physics: Conference Series, 53:44–82, nov 2006.

[107] Guido Altarelli and Ferruccio Feruglio. Discrete flavor symmetries and models of neutrino mixing. Rev. Mod. Phys., 82:2701–2729, Sep 2010.

[108] Stephen F King and Christoph Luhn. Neutrino mass and mixing with discrete symmetry. Reports on Progress in Physics, 76(5):056201, may 2013.

[109] Stephen F King. Models of neutrino mass, mixing and CP violation. Journal of Physics G: Nuclear and Particle Physics, 42(12):123001, nov 2015.

[110] R.N. Mohapatra and A.Y. Smirnov. Neutrino mass and new physics. Annual Review of Nuclear and Particle Science, 56(1):569–628, 2006.

[111] K. Hirata et al. Observation of a neutrino burst from the supernova sn1987a. Phys. Rev. Lett., 58:1490–1493, Apr 1987.

[112] R. M. Bionta et al. Observation of a neutrino burst in coincidence with super- nova 1987a in the large magellanic cloud. Phys. Rev. Lett., 58:1494–1496, Apr 1987.

[113] G. A. Tammann, W. Loeffler, and A. Schroeder. The galactic supernova rate. apjs, 92:487, Jun 1994.

[114] Roland Diehl et al. Radioactive 26al from massive stars in the galaxy. Nature, 439(7072), 2006.

[115] John F. Beacom. The diffuse supernova neutrino background. Annual Review of Nuclear and Particle Science, 60(1):439–462, 2010.

[116] S.Ando and K.Sato. Relic neutrino background from cosmological supernovae. New Journal of Physics, 6:170–170, nov 2004.

[117] T. Totani, K. Sato, H. E. Dalhed, and J. R. Wilson. Future detection of supernova neutrino burst and explosion mechanism. The Astrophysical Journal, 496(1):216–225, mar 1998.

[118] Keitaro Takahashi, Mariko Watanabe, Katsuhiko Sato, and Tomonori Totani. Effects of neutrino oscillation on the supernova neutrino spectrum. Phys. Rev. D, 64:093004, Oct 2001.

[119] B. Aharmim et al. A search for neutrinos from the SolarhepReaction and the diffuse supernova neutrino background with the sudbury neutrino observatory. The Astrophysical Journal, 653(2):1545–1551, dec 2006.

[120] G. Bellini et al. Study of solar and other unknown anti-neutrino fluxes with borexino at lngs. Physics Letters B, 696(3):191 – 196, 2011.

[121] K. Bays et al. Supernova relic neutrino search at super-kamiokande. Phys. Rev. D, 85:052007, Mar 2012.

[122] H. Zhang et al. Supernova relic neutrino search with neutron tagging at super- kamiokande-iv. Astroparticle Physics, 60:41 – 46, 2015.

[123] A. Gando et al. SEARCH FOR EXTRATERRESTRIAL ANTINEUTRINO SOURCES WITH THE KamLAND DETECTOR. The Astrophysical Journal, 745(2):193, jan 2012.

[124] John F. Beacom and Mark R. Vagins. Antineutrino spectroscopy with large water Cˇerenkov detectors. Phys. Rev. Lett., 93:171101, Oct 2004.

[125] K. Abe et al. Hyper-Kamiokande Design Report. 2018.

[126] T. Adam et al. Juno conceptual design report. 2015.

[127] John F. Beacom et al. Physics prospects of the jinping neutrino experiment. Chinese physics C, 41(2):23002, 2017.

[128] Teppei Katori and Marco Martini. Neutrino–nucleus cross sections for os- cillation experiments. Journal of Physics G: Nuclear and Particle Physics, 45(1):013001, dec 2017.

[129] K. Abe et al. Measurement of the neutrino-oxygen neutral-current interaction cross section by observing nuclear deexcitation γ rays. Phys. Rev. D, 90:072012, Oct 2014.

[130] H. ZHANG (Super-Kamiokande collaboration. Proceedings, 32nd International Cosmic Ray Conference (ICRC 2011). 2011.

[131] L. Aliaga et al. Design, calibration, and performance of the minerva detector. Nucl. Instrum. Meth. A, 743:130 – 159, 2014.

[132] A. A. Aguilar-Arevalo et al. Measurement of the neutrino neutral-current elastic differential cross section on mineral oil at Eν 1 GeV. Phys. Rev. D, 82:092005, Nov 2010.

[133] D. Casper. The nuance neutrino physics simulation, and the future. Nuclear Physics B - Proceedings Supplements, 112(1):161 – 170, 2002.

[134] C. Zeitnitz and T.A. Gabriel. Nucl. Instr. Meth. A, 349, 1994.

[135] Yoshinari Hayato. A neutrino interaction simulation program library NEUT. Acta Phys. Polon., B40:2477–2489, 2009.

[136] Tomasz Golan, Cezary Juszczak, and Jan T. Sobczyk. Effects of final-state interactions in neutrino-nucleus interactions. Phys. Rev. C, 86:015505, Jul 2012.

[137] C Anderson et al. The ArgoNeuT detector in the NuMI low-energy beam line at fermilab. 7(10):P10019–P10019, oct 2012.

[138] A. R. Back et al. Accelerator neutrino neutron interaction experiment (annie): Preliminary results and physics phase proposal. 2017.

[139] K. Abe et al. Search for cp violation in neutrino and antineutrino oscillations by the t2k experiment with 2.2 1021 protons on target. Phys. Rev. Lett., 121, 2018.

[140] K. Abe and others. Combined analysis of neutrino and antineutrino oscillations at t2k. Phys. Rev. Lett., 118, 2017.

[141] Y. Sato. High Power Beam Operation of the J-PARC RCS and MR. pages 2938–2942, 2018.

[142] K. Matsuoka et al. Development and production of the ionization chamber for the t2k muon monitor. Nucl. Instrum. Meth. A, 623(1), 2010.

[143] K. Matsuoka et al. Design and performance of the muon monitor for the t2k neutrino oscillation experiment. Nucl. Instrum. Meth. A, 624(3), 2010.

[144] D. Beavis et al. techreport bnl-52459. Brookhaven National Lab, NY, 1995.

[145] S. Gomi et al. Development and study of the multi pixel photon counter. Nucl. Instrum. Meth. A, 581(1), 2007.

[146] M. Yokoyama and other. Development of multi-pixel photon counters. 2006.

[147] S. Aoki et al. The t2k side muon range detector (smrd). Nucl. Instrum. Meth. A, 698:135 – 146, 2013.

[148] S. Assylbekov et al. The t2k nd280 off-axis pi ‒ zero detector. Nucl. Instrum. Meth. A, 686:48 – 63, 2012.

[149] N. Abgrall et al. Time projection chambers for the t2k near detectors. Nucl. Instrum. Meth. A, 637(1):25 – 46, 2011.

[150] I. Giomataris et al. Micromegas in a bulk. Nucl. Instrum. Meth. A, 560(2):405 – 408, 2006.

[151] P.-A. Amaudruz and other. The t2k fine-grained detectors. Nucl. Instrum. Meth. A, 696:1 – 31, 2012.

[152] D Allan et al. The electromagnetic calorimeter for the t2k near detector ND280. Journal of Instrumentation, 8(10):P10019–P10019, 2013.

[153] I. M. Frank and I. E. Tamm. Coherent visible radiation of fast electrons passing through matter. Compt. Rend. Acad. Sci. URSS, 14, 1937.

[154] N. Nishino et al. in: Nuclear Science Symposium Conference Record, 2007, NSS’07, IEEE, vol. 1, 2008, p. 127.

[155] A. Suzuki, M. Mori, K. Kaneyuki, T. Tanimori, J. Takeuchi, H. Kyushima, and Y. Ohashi. Improvement of 20 in. diameter photomultiplier tubes. Nucl. Instrum. Meth. A, 329(1):299 – 313, 1993.

[156] R. Becker-Szendy et al. Calibration of the imb detector. Nucl. Instrum. Meth. A, 352(3):629 – 639, 1995.

[157] H. Nishino et al. High-speed charge-to-time converter asic for the super- kamiokande detector. Nucl. Instrum. Meth. A, 610(3):710 – 717, 2009.

[158] A.Renshaw. First Direct Evidence for Matter Enhanced Neutrino Oscillation, Using Super-Kamiokande Solar Neutrino Data. Ph.D thesis, University of California, Irvine, 2013.

[159] Y.Nakano. 8B solar neutrino spectrum measurement using Super-Kamiokande IV. Ph.D thesis, University of Tokyo, 2016.

[160] G. Battistoni et al. The fluka code: description and benchmarking. AIP Conference Proceedings, 896(1):31–49, 2007.

[161] R. Brun et al. GEANT3. 1987.

[162] N. Abgrall et al. Measurements of cross sections and charged pion spectra in proton-carbon interactions at 31 gev/c. Phys. Rev. C, 84:034604, Sep 2011.

[163] N. Abgrall et al. Measurement of production properties of positively charged kaons in proton-carbon interactions at 31 gev/c. Phys. Rev. C, 85:035210, Mar 2012.

[164] T. Eichten et al. Particle production in proton interactions in nuclei at 24 gev/c. Nuclear Physics B, 44(2):333 – 343, 1972.

[165] I. Chemakin et al. Pion production by protons on a thin beryllium target at 6.4, 12.3, and 17.5 gev/c incident proton momenta. Phys. Rev. C, 77:015209, Jan 2008.

[166] N. Abgrall et al. The European Physical Journal C, 76(11):617, 2016.

[167] C. H. Llewellyn Smith.

[168] R. Gran et al. Measurement of the quasielastic axial vector mass in neutrino interactions on oxygen. Phys. Rev. D, 74, 2006.

[169] A. A. Aguilar-Arevalo et al. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section. Phys. Rev., D81, 2010.

[170] R.A. Smith and E.J. Moniz. Neutrino reactions on nuclear targets. Nucl. Phys. B, 101(2):547, 1975.

[171] J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas. Inclusive charged-current neutrino-nucleus reactions. Phys. Rev. C, 83:045501, Apr 2011.

[172] M. Martini, M. Ericson, G. Chanfray, and J. Marteau. Unified approach for nucleon knock-out and coherent and incoherent pion production in neutrino interactions with nuclei. Phys. Rev. C, 80:065501, Dec 2009.

[173] A. A. Aguilar-Arevalo et al. First measurement of the muon antineutrino double-differential charged-current quasielastic cross section. Phys. Rev. D, 88, 2013.

[174] R. Gran, J. Nieves, F. Sanchez, and M. J. Vicente Vacas. Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 gev. Phys. Rev. D, 88:113007, Dec 2013.

[175] Dieter Rein and Lalit M Sehgal. Neutrino-excitation of baryon resonances and single pion production. Annals of Physics, 133(1):79 – 153, 1981.

[176] Dieter Rein and Lalit M. Sehgal. Coherent π 0 production in neutrino reac- tions. Nuclear Physics B, 223(1):29 – 44, 1983.

[177] Reya E.& Vogt Gl ü ck, M. A. Eur. Phys. J. C, 5, 461, 1998.

[178] A. Bodek and U. K. Yang. Modeling neutrino and electron scattering inelastic cross sections, 2003.

[179] Torbjorn Sjostrand. Pythia 5.7 and jetset 7.4 physics and manual. 1995.

[180] R. Serber. Nuclear reactions at high energies. Phys. Rev., 72:1114–1115, Dec 1947.

[181] M. L. Goldberger. The interaction of high energy neutrons and heavy nuclei. Phys. Rev., 74:1269–1277, Nov 1948.

[182] N Metropolis et al. Monte carlo calculations on intranuclear cascades. i. low- energy studies. Phys. Rev., 110:185–203, Apr 1958.

[183] N. Metropolis, R. Bivins, M. Storm, J. M. Miller, G. Friedlander, and Anthony Turkevich. Monte carlo calculations on intranuclear cascades. ii. high-energy studies and pion processes. Phys. Rev., 110:204–219, Apr 1958.

[184] Hugo W. Bertini. Low-energy intranuclear cascade calculation. Phys. Rev., 131, 1963.

[185] HUGO W. BERTINI. Intranuclear-cascade calculation of the secondary nu- cleon spectra from nucleon-nucleus interactions in the energy range 340 to 2900 mev and comparisons with experiment. Phys. Rev., 188, 1969.

[186] Roger D. Woods and David S. Saxon. Diffuse surface optical model for nucleon- nuclei scattering. Phys. Rev., 95:577–578, Jul 1954.

[187] L. D. Landau and I. Pomeranchuk. Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies. Dokl. Akad. Nauk Ser. Fiz., 92:535–536, 1953.

[188] Leo Stodolsky. Formation Zone Description in Multiproduction. In Proceedings: International Colloquium on Multiparticle Reactions, 6th, Oxford, Eng., Jul 14-19, 1975, page 577, 1975.

[189] D. S. Baranov et al. AN ESTIMATE FOR THE FORMATION LENGTH OF HADRONS IN NEUTRINO INTERACTIONS. 1984.

[190] E. S. Pinzon Guerra et al. Using world π±-nucleus scattering data to constrain an intranuclear cascade model. Phys. Rev. D, 99:052007, Mar 2019.

[191] L.L. Salcedo, E. Oset, M.J. Vicente-Vacas, and C. Garcia-Recio. Computer simulation of inclusive pion nuclear reactions. Nuclear Physics A, 484(3):557 – 592, 1988.

[192] K Nakamura et al. Review of particle physics. Journal of Physics G: Nuclear and Particle Physics, 37(7A):075021, jul 2010.

[193] Hugo W. Bertini. Nonelastic interactions of nucleons and π mesons with com- plex nuclei at energies below 3 gev. Phys. Rev. C, 6, 1972.

[194] A. Fass. et al. Fluka 92. Proceedings of the Workshop on Simulating Accelerator Radiation Environments,, 1993.

[195] HETC:MonteCarloHigh-EnergyNucleon-MesonTransportCode, Oak Ridge Na- tional Laboratory RSIC Computer Code Collection CCC-178.

[196] R.G. Alsmiller, F.S. Alsmiller, and O.W. Hermann. The high-energy transport code hetc88 research sponsored by office of high energy and nuclear physics, u.s. department of energy under contract no. de-ac05-84or21400 with martin marietta energy systems, inc. and comparisons with experimental data. Nucl. Instrum. Meth. A, 295, 1990.

[197] J.O.Johnson and T.A.Gabriel. A monte carlo ionization chamber analysis packag, ORNL/TM-10340, 1988.

[198] W.A. Coleman and T.W. Armstrong. Nucleon–meson transport code nmtc.

[199] M.P. Guthrie. Evap-4: Another modification of a code to calculate particle evaporation from excited compound nuclei.

[200] I. Dostrovsky, Z. Fraenkel, and G. Friedlander. Monte carlo calculations of nuclear evaporation processes. iii. applications to low-energy reactions. Phys. Rev., 116:683–702, Nov 1959.

[201] Robert Hofstadter. Electron scattering and nuclear structure. Rev. Mod. Phys., 28:214–254, Jul 1956.

[202] J. O. Johnson and T. A. Gabriel. Development and evaluation of a Monte Carlo Code System for analysis of ionization chamber responses. 1987.

[203] T.J.Irvine. Development of Neutron-Tagging Techniques and Application to Atmospheric Neutrino Oscillation Analysis in Super-Kamiokande. PhD thesis, University of Tokyo, 2014.

[204] R. Akutsu et al. A study of neutrons associated with CC νµ/ν¯µ interactions on water at the far detecto. T2K-TN-371 (internal note), 2019.

[205] R.B. Patterson, E.M. Laird, Y. Liu, P.D. Meyers, I. Stancu, and H.A. Tanaka. The extended-track event reconstruction for miniboone. Nucl. Instrum. Meth. A, 608(1):206 – 224, 2009.

[206] B. Hamermesh, G. R. Ringo, and S. Wexler. The thermal neutron capture cross section of hydrogen. Phys. Rev., 90:603–606, May 1953.

[207] R. B. Firestone and Zs. Revay. Thermal neutron capture cross sections for 16,17,18O and 2H. Phys. Rev. C, 93:044311, Apr 2016.

[208] J.A. Dunmore. The Separation of CC and NC Events in the Sudbury Neutrino Observatory. Ph.D thesis, Oxford University, 2004.

[209] Andreas Hoecker, Peter Speckmayer, Joerg Stelzer, Jan Therhaag, Eckhard von Toerne, and Helge Voss. TMVA: Toolkit for Multivariate Data Analysis. PoS, ACAT:040, 2007.

[210] H. Watanabe et al. First study of neutron tagging with a water cherenkov detector. Astroparticle Physics, 31(4):320 – 328, 2009.

[211] H.Zhang. Study of Low Energy Electron Anti-neutrinos at Super-Kamiokande IV. PhD thesis, Tsinghua University, 2012.

[212] F. James. MINUIT Reference Manual. Technical report, CERN, 2000.

[213] R. Wendell. Prob3++ software for computing three flavor neutrino oscillation probabilities. http://webhome.phy.duke.edu/ raw22/public/Prob3++/, 2012.

[214] X.Li. A Joint Analysis of T2K Beam Neutrino and Super-Kamiokande Sub- GeV Atmospheric Neutrino Data. PhD thesis, Stony Brook University, 2018.

[215] X. Li and M. Wilking. FiTQun Event Selection Optimization. T2K-TN-319 (internal note), 2017.

[216] Frank C. Porter. Testing Consistency of Two Histograms. 2008.

[217] K. Mahn. For Summer 2016 XSEC analyses and onward. 2018.

[218] P. de Perio et al. NEUT Systematic Studies for 2010a Analysis. T2K-TN-32 (internal note), 2011.

[219] W. Y. Ma, E. S. Pinzon Guerra, M. Yu, A. Fiorentini, and T. Feusels. Current status of final-state interaction models and their impact on neutrino-nucleus interactions. J. Phys. Conf. Ser., 888(1):012171, 2017.

[220] J. Imber et al. T2K-SK Systematic Error Summary for the 2017 Oscillation Analysis. T2K-TN-326 (internal note), 2017.

[221] R. Wendell for the SK-LB J. Kameda and T2K-SK groups. Study on Super-K events and systematic errors relevant for the νµ disappearance analysis with T2K 3.23×10 19 POT data. T2K-TN-214 (internal note), 2014.

[222] L.Wan. Experimental Studies on Low Energy Electron Antineutrinos and Re- lated Physics. PhD thesis, Tsinghua University, 2018.

[223] R.A.Wendell. Three flavor oscillation analysis of atmospheric neutrinos in Super-Kamiokande. PhD thesis, University of Tokyo, 2008.

[224] L.K.Pik. Study of the neutrino mass hierarchy with the atmospheric neutrino data observed in Super-Kamiokande. PhD thesis, University of Tokyo, 2012.

[225] G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, and A. Palazzo. Getting the most from the statistical analysis of solar neutrino oscillations. Phys. Rev. D, 66, Sep 2002.

[226] K. Abe et al. Proposal for an extended run of t2k to 20 1021 pot. arXiv, 2016.

[227] I. Anghel et al. Letter of intent: The accelerator neutrino neutron interaction experiment (annie). 2015.

[228] S. Bhadra et al. Letter of Intent to Construct a nuPRISM Detector in the J-PARC Neutrino Beamline. 2014.

[229] M Barbi et al. A Water Cherenkov Test Beam Experiment for Hyper- Kamiokande and Future Large-scale Water-based Detectors. Technical Report CERN-SPSC-2019-042. SPSC-I-254, CERN, Geneva, 2019.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る