リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Measurement of the branching fraction of tau lepton decay to the final state of pion, lepton, lepton and neutrino at Belle」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Measurement of the branching fraction of tau lepton decay to the final state of pion, lepton, lepton and neutrino at Belle

金, 憶凡 東京大学 DOI:10.15083/0002001520

2021.09.08

概要

Using a 562 fb-1 dataset collected at the γ(4S) resonance with Belle detector at the KEKB asymmetric-energy e⁺ e⁻ collider, the branching fractions for rare tau decays τ⁺ → π± l⁺ l⁻ ντ are measured, where l is an electron or a muon.

The branching fraction of τ± → π± e⁺ e⁻ ντ is measured to be β(τ± → π± e⁺ e⁻ ντ) = (2.33 ± 0.19 ± 0.30) × 10-5, where the first uncertainty is statistical and the second is systematic. This result is the first measurement on this decay mode. In the case of τ± μ⁺ μ⁻ ντ, an upper limit on branching fraction is obtained, β(τ± → π± μ⁺ μ⁻ ντ) < 0.55 × 10-5 at 90% confidence level. This result is the first upper limit on this decay mode.

The measured results are consistent with the theoretical prediction from the Standard Model. The result of this measurement would contribute to future studies of physics beyond the Standard Model, such as lepton flavour violation searches.

この論文で使われている画像

参考文献

[1] S. Scherer, Introduction to Chiral Perturbation Theory, arXiv:hep-ph/0210398.

[2] G. Ecker et al., The Role of Resonances in Chiral Perturbation Theory, Nuclear Physics B, 321 (1989): 311-342.

[3] Richard. F. Lebed, Phenomenology of large Nc QCD, World Scientific.

[4] P. Roig, et al., Weak radiative pion vertex in τ − π−ντ l+l− decays, Physical Review D, 2013, 88(3): 033007.

[5] A. A. Aguilar-Arevalo et al., Unexplained Excess of Electronlike Events from a 1-GeV Neutrino Beam, Phys. Rev. Lett. 102.10 (2009): 101802.

[6] A. A. Aguilar-Arevalo et al., Observation of a Significant Excess of Electron-Like Events in the MiniBooNE Short-Baseline Neutrino Experiment, arXiv:1805.12028.

[7] S. N. Gninenko, MiniBooNE Anomaly and Heavy Neutrino Decay, PHYSICAL REVIEW LETTERS, 103, 241802 (2009).

[8] C. Dib, et al., Heavy sterile neutrinos in tau decays and the MiniBooNE anomaly, Physical Review D, 85 (2012) 011301.

[9] https://hflav.web.cern.ch/content/tau

[10] http://belle.kek.jp/belle/transparency/

[11] A. Bevan et al., The Physics of the B Factories, Springer, 2016.

[12] A. Gaz, Indirect constraints on New Physics from the B-factories, arXiv:1411.1882.

[13] A. Abashian et al., The Belle detector, Nuclear Instruments and Methods in Physics Research A 479 (2002) 117–232.

[14] S. Kurokawa et al., Overview of the KEKB accelerators, Nuclear Instruments and Methods in Physics Research A 499 (2003) 1–7.

[15] K. Akai et al., RF systems for the KEK B-Factory, Nuclear Instruments and Methods in Physics Research A 499 (2003) 45–65.

[16] K. Hosoyama, et al., Development of the kek-b superconducting crab cavity, 11th Euro- pean Particle Accelerator Conference. 2008.

[17] R. Abe et al., The new beampipe for the Belle experiment, Nuclear Instruments and Methods in Physics Research A 535 (2004) 558–561.

[18] M. Yokoyama et al., Radiation hardness of VA1 with submicron process technology. IEEE Transactions on Nuclear Science 48, 440 (2001).

[19] Z. Natkaniec et al., Status of the Belle silicon vertex detector, Nuclear Instruments and Methods in Physics Research A 560 (2006) 1–4.

[20] R. Abe et al., BELLE/SVD2 status and performance, Nuclear Instruments and Methods in Physics Research A 535 (2004) 379–383.

[21] H. Hirano et al., A high-resolution cylindrical drift chamber for the KEK B-factory, Nu- clear Instruments and Methods in Physics Research A 455 (2000) 294–304.

[22] T. Sumiyoshi et al., Silica aerogel Cherenkov counter for the KEK B-factory experiment, Nuclear Instruments and Methods in Physics Research A 433 (1999) 385–391.

[23] H. Kichimi et al., The Belle TOF system, Nuclear Instruments and Methods in Physics Research A 453 (2000) 315–320.

[24] K. Miyabayashi et al., Belle electromagnetic calorimeter, Nuclear Instruments and Meth- ods in Physics Research A 494 (2002) 298–302.

[25] A. Abashing et al., The KL/µ detector subsystem for the BELLE experiment at the KEK B-factory, Nuclear Instruments and Methods in Physics Research A 449 (2000) 112–124.

[26] H. J. Kim et al., A fast programmable trigger for isolated cluster counting in the BELLE experiment, Nuclear Instruments and Methods in Physics Research A 457 (2001) 634–639.

[27] S. Jadach, B. Ward, Z. Was, The precision Monte Carlo event generator KK for two- fermion final states in e+e− collisions, Computer Physics Communications, 2000, 130(3): 260-325.

[28] F. A. Berends, P. H. Daverveldt, R. Kleiss, Monte Carlo simulation of two-photon pro- cesses: II: Complete lowest order calculations for four-lepton production processes in electron-positron collisions, Computer Physics Communications, 1986, 40(2-3): 285-307.

[29] Written for Belle based on HemiCosm code.

[30] D. J. Lange, The EvtGen particle decay simulation package, Nuclear Instruments and Methods in Physics Research Section A 462(2001) 152.

[31] N. Davidson, et al., Universal interface of TAUOLA: technical and physics documentation, Computer Physics Communications, 2012, 183(3): 821-843.

[32] E. Barberio, B. van Eijk, and Z. Was, Photos — a universal Monte Carlo for QED radiative corrections in decays, Computer Physics Communications, 1991, 66: 115.

[33] R. Brun et al., GEANT 3.21, CERN Report No.DD/EE/84-1, 1987.

[34] http://belle.kek.jp/group/tautp/tauphys/tsim/tsim.html

[35] http://belle.kek.jp/secured/wiki/doku.php?id=physics:taup:start

[36] http://belle.kek.jp/group/pid_joint/

[37] http://belle.kek.jp/~hitoshi/private/track/

[38] http://pdg.lbl.gov/2016/reviews/rpp2016-rev-tau-branching-fractions.pdf

[39] Kenji Inami, Bellenote # 629, Note on the tau-pair skim.

[40] Denis Epifanov, Bellenote # 855, Study of τ − → KSπ−ντ decay at Belle.

[41] A. Stahl, Physics with Tau Leptons, Chapter 2, Springer.

[42] L. Piilonen, et al., Bellenote # 338, BELLE Muon Identification.

[43] S. Nishida, Bellenote # 779, Study of Kaon and Pion Identification Using Inclusive D∗ Sample.

[44] L. Hinz, Bellenote # 954, Lepton ID efficiency correction and systematic error.

[45] P. Koppenburg, Bellenote # 621, A Measurement of the Track finding efficiency Using partially Reconstructed D∗ Decays.

[46] Bipul Bhuyan, Bellenote # 1165, High Pt Tracking Efficiency Using Partially Recon- structed D∗ Decays.

[47] Wolfgang Dungel, Bellenote # 1176, Systematic investigation of the reconstruction effi- ciency of low momentum π± and π0.

[48] http://belle.kek.jp/group/ecl/private/lum/lum6new.html

[49] S. Banerjee, et al., Tau and muon pair production cross sections in electron-positron annihilations at s = 10.58 GeV, Physical Review D, 2008, 77(5):054012.

[50] http://belle.kek.jp/secured/wiki/doku.php?id=software:tsim&s[]=trigger

[51] Wolfgang. A. Rolke, Angel. M. Lopez, Jan. Conrad, Limits and Confidence Intervals in the Presence of Nuisance Parameters, arXiv:physics/0403059.

[52] J. Lundberg, J. Conrad, W. Rolke, A. Lopez, Limits, discovery and cut optimization for a Poisson process with uncertainty in background and signal efficiency: TRolke 2.0, arXiv:0907.3450.

[53] https://root.cern.ch/doc/v608/classTRolke.html

[54] Gary. J. Feldman, Robert. D. Cousins, A Unified Approach to the Classical Statistical Analysis of Small Signals, arXiv:physics/9711021.

[55] C. Z. Yuan, The Belle II Experiment at the SuperKEKB, arXiv:1208.3813.

[56] T. Abe, et al., Belle II technical design report, arXiv:1011.0352, 2010.

参考文献をもっと見る