リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Genome-wide screening of genes involved in programming diapause in the next generation in silkworm, Bombyx mori (Lepidoptera: Bombycidae)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Genome-wide screening of genes involved in programming diapause in the next generation in silkworm, Bombyx mori (Lepidoptera: Bombycidae)

Egi, Yuichi Sakamoto, Katsuhiko 神戸大学

2022.11.07

概要

Maternal silkworms (Bombyx mori) of bivoltine strains are destined to produce either diapause or non-diapause eggs depending on environmental factors, such as, temperature and photoperiod experienced during the egg and larval stages. However, the molecular mechanisms that program diapause, which depend on information about the environment, remain unclear. We aimed to identify genes that are involved in programming diapause in the next generation in bivoltine silkworms. We therefore screened differentially expressed genes (DEGs) in the larval brains of diapause- and non-diapause-egg producers kept under three different diapause-inducing conditions using cap analysis of gene expression. Under each condition, only temperature, illumination or photoperiod was changed during the egg or larval stage as a diapause-controlling stimulus to induce the production of diapause or non-diapause eggs. We then verified the expression of DEGs that were common to all the three conditions using real-time quantitative PCR. We investigated the functional involvement of candidate genes in programming diapause using double-stranded RNA interference (RNAi) for gene knockdown. The results showed more abundant juvenile hormone acid methyltransferase (Jhamt) and proton-coupled folate transporter (Pcft) gene expression in the brains of fifth instar larvae of producers of diapause eggs than those of non-diapause eggs under the three conditions. Furthermore, RNAi against either of these genes significantly decreased the incidence of diapause in the next generation. These findings indicate that both Jhamt and Pcft are involved in the programming of diapause in the silkworm brain. These genes could function in retaining information that leads to diapause in the next generation.

この論文で使われている画像

参考文献

AKITOMO S., EGI Y., NAKAMURA Y., SUETSUGU Y., OISHI K. & SAKAMOTO K. 2017: Genome-wide microarray screening for Bombyx mori genes related to transmitting the determination outcome of whether to produce diapause or nondiapause eggs. — Insect Sci. 24: 187–193.

ARNER E., DAUB C.O., VITTING-SEERUP K., ANDERSSON R., LILJE B., DRABLØS F., LENNARTSSON A., RÖNNERBLAD M., HRYDZIUSZKO O., VITEZIC M. ET AL. 2015: Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. — Science 347: 1010–1014.

CARNINCI P., WESTOVER A., NISHIYAMA Y., OHSUMI T., ITOH M., NAGAOKA S., SASAKI N., OKAZAKI Y., MURAMATSU M., SCHNEIDER C. ET AL. 1997: High efficiency selection of full-length cDNA by improved biotinylated cap trapper. — DNA Res. 4: 61–66.

CARNINCI P., KASUKAWA T., KATAYAMA S., GOUGH J., FRITH M.C., MAEDA N., OYAMA R., RAVASI T., LENHARD B., WELLS C. ET AL. 2005: The transcriptional landscape of the mammalian ge- nome. — Science 309: 1559–1563.

DAIMON T., KOZAKI T., NIWA R., KOBAYASHI I., FURUTA K., NAMIKI T., UCHINO K., BANNO Y., KATSUMA S., TAMURA T. ET AL. 2012: Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori. — PLoS Genet. 8: e1002486, 13 pp.

DENLINGER D.L. 2022: Insect Diapause. Cambridge University Press, Cambridge, UK, 464 pp.

DENLINGER D.L. & ARMBRUSTER P.A. 2014: Mosquito diapause. — Annu. Rev. Entomol. 59: 73–93.

DENLINGER D.L., YOCUM G.D. & RINCHART J.P. 2012: Hormonal control of diapause. In Gilbert L.I. (eds): Insect Endocrinology. Academic Press, London, pp. 430–463.

EGI Y., AKITOMO S., FUJII T., BANNO Y. & SAKAMOTO K. 2014: Silk-worm strains that can be clearly destined towards either em- bryonic diapause or direct development by adjusting a single ambient parameter during the preceding generation. — Ento- mol. Sci. 17: 396–399.

FORREST A.R.R., KAWAJI H., REHLI M., BAILLIE J.K., DE HOON M.J.L., HARBERLE V., LASSMANN T., KULAKOVSKIY I.V., LIZIO M., ITOH M. ET AL. 2014: A promoter-level mammalian expression atlas. — Nature 507: 462–470.

FUKUDA S. 1951: The production of the diapause eggs by trans- planting the suboesophageal ganglion in the silkworm. — Proc. Jap. Acad. 27: 672–677.

FUKUDA S. 1952: Function of the pupal brain and suboesophageal ganglion in the production of non-diapause eggs in the silk- worm. — Annot. Zool. Jpn. 25: 149–155.

HABERLE V., FORREST A.R.R., HAYASHIZAKI Y., CARNINCI P. & LEN-HARD B. 2015: CAGEr: precise TSS data retrieval and high-res- olution promoterome mining for integrative analyses. — Nucl. Acids Res. 43(8): e51, 11 pp.

HASEGAWA K. 1951: Studies on the voltinism in the silkworm, Bombyx mori L., with special reference to the organs concern- ing determination of voltinism (a preliminary note). — Proc. Jap. Acad. 27: 667–671.

HASEGAWA K. & SHIMIZU I. 1987: In vivo and in vitro photoperi- odic induction of diapause using isolated brain-suboesophageal ganglion complexes of the silkworm, Bombyx mori. — J. In- sect Physiol. 33: 959–966.

HOU Z., GANGJEE A. & MATHERLY L.H. 2022: The evolving biol- ogy of the proton-coupled folate transporter: New insights into regulation, structure, and mechanism. — FASEB J. 36: e22164, 15 pp.

ITOH M., KOJIMA M., NAGAO-SATO S., SAIJO E., LASSMANN T., KANAMORI-KATAYAMA M., KAIHO A., LIZIO M., KAWAJI H., CARNINCI P. ET AL. 2012: Automated workflow for preparation of cDNA for cap analysis of gene expression on a single molecule se- quencer — PLoS ONE 7(1): e30809, 8 pp.

KANAMORI-KATAYAMA M., ITOH M., KAWAJI H., LASSMANN T., KATAYAMA S., KOJIMA M., BERTIN N., KAIHO A., NINOMIYA N., DAUB C.O. ET AL. 2011: Unamplified cap analysis of gene ex- pression on a single-molecule sequencer. — Genome Res. 21: 1150–1159.

KATAYAMA S., TOMARU Y., KASUKAWA K., WAKI K., NAKANISHI M., NAKAMURA M., NISHIDA H., YAP C.C., SUZUKI M., KAWAI J. ET AL. 2005: Antisense transcription in the mammalian transcrip- tome. — Science 309: 1564–1566.

KAYUKAWA T., MINAKUCHI C., NAMIKI T., TOGAWA T., YOSHIYAMA M., KAMIMURA M., MITA K., IMANISHI S., KIUCHI M., ISHIKAWA Y. ET AL. 2012: Transcriptional regulation of juvenile hormone- mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. — Proc. Natl. Acad. Sci. U.S.A. 109: 11729– 11734.

KAYUKAWA T., MURATA M., KOBAYASHI I., MURAMATSU D., OKADA C., UCHINO K., SEZUTSU H., KIUCHI M., TAMURA T., HIRUMA K. ET AL. 2014: Hormonal regulation and developmental role of Krüppel homolog 1, a repressor of metamorphosis, in the silk- worm Bombyx mori. — Dev. Biol. 388: 48–56.

KODZIUS R., KOJIMA M., NISHIYORI H., NAKAMURA M., FUKUDA S., TAGAMI M., SASAKI D., IMAMURA K., KAI C., HARBERS M. ET AL. 2006: CAGE: cap analysis of gene expression. — Nat. Meth- ods 3: 211–222.

KOGURE M. 1933: The influence of light and temperature on certain characters of the silkworm, Bombyx mori. — J. Dep. Agric. Kyushu Imper. Univ. 4: 1–93.

LI H. & DURBIN R. 2009: Fast and accurate short read alignment with Burrows-Wheeler transform. — Bioinformatics 25: 1754– 1760.

LOZANO J. & BELLS X. 2011: Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabol- ous and holometabolous species. — Sci. Rep. 1: 163, 7 pp.

MIKI T., SHINOHARA T., CHAFINO S., NOJI S. & TOMIOKA K. 2022: Photoperiod and temperature separately regulate nymphal de- velopment through JH and insulin/TOR signaling pathways in an insect. — Proc. Natl. Acad. Sci. U.S.A. 117: 5525–5531.

MINAKUCHI C., ZHOU X. & RIDDIFORD L.M. 2008: Krüppel ho-molog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster. — Mech. Dev. 125: 91–105.

MINAKUCHI C., NAMIKI T. & SHINODA T. 2009: Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. — Dev. Biol. 325: 341–350.

MUKAI A., MANO G., MARTEAUX L.D., SHINADA T. & GOTO S.G. 2022: Juvenile hormone as a causal factor for maternal regula- tion of diapause in a wasp. — Insect Biochem. Mol. Biol. 144: 103758, 9 pp.

MURATA M., NISHIYORI-SUEKI H., KOJIMA-ISHIYAMA M., CARNINCI P., HAYASHIZAKI Y. & ITOH M. 2014: Detecting expressed genes using CAGE. — Methods Mol. Biol. 1164: 67–85.

NIJHOUT H.F. 1994: Insect Hormones. Princeton University Press, New Jersey, 280 pp.

SHINODA T. & ITOYAMA K. 2003: Juvenile hormone acid methyl- transferase: A key regulatory enzyme for insect metamorpho- sis. — Proc. Natl. Acad. Sci. U.S.A. 100: 11986–11991.

SMYKAL V., DAIMON T., KAYUKAWA T., TAKAKI K., SHINODA T. & JINDRA M. 2014: Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. — Dev. Biol. 390: 221–230.

TAUBER M.J., TAUBER C.A. & MASAKI S. 1986: Seasonal Adapta-tions of Insects. Oxford University Press, Oxford, 416 pp.

TSCHUCH C., SCHULZ A., PSCHERER A., WERFT W., BENNER A., HOTZ- WAGENBLATT A.H., BARRIONUEVO L.S., LICHTER P. & MERTENS D. 2008: Off-target effects of siRNA specific for GFP. — BMC Mol. Biol. 9: 60, 14 pp.

WATANABE K. 1924: Studies on the voltinism of the silkworm, Bombyx mori. — Bull. Sericult. Exp. Stat. 6: 411–455 [in Japa- nese].

YAGI S. & FUKAYA M. 1974: Juvenile hormone as a key factor regulating larval diapause of the rice stem borer, Chilo sup- pressalis (Lepidoptera: Pyralidae). — Appl. Entomol. Zool. 9: 247–255.

YAMASHITA O. & HASEGAWA K. 1966: Further studies on the mode of action of the diapause hormone in the silkworm, Bombyx mori L. — J. Insect Physiol. 12: 957–962.

YOU-JIN H., WEN-XIA H. & BIN C. 2014: Comparative analysis of proteins in non- and summer-diapausing pupae of the onion fly, Delia antiqua (Diptera: Anthomyiidae), using two-dimensional gel electrophoresis. — Acta Entomol. Sin. 57: 161–167.

ZHAO R. & GOLDMAN I.D. 2013: The proton-coupled folate trans- porter: physiological and pharmacological roles. — Curr. Opin. Pharmacol. 13: 875–880.

ZIELIŃSKA Z.M. & GRZELAKOWSKA B. 1965a: Folate derivatives in the metabolism of insects – I. Mitoses in cells of the fol- licular epithelium as evoked in Acantholyda nemoralis Thoms. by folate and its 4-aminoanalogue. — J. Insect Physiol. 11: 405–411.

ZIELIŃSKA Z.M. & GRZELAKOWSKA B. 1965b: Folate derivatives in the metabolism of insects – II. Biosynthesis of nucleic acids in the polytrophic ovaries of the diapausing larvae of Acantholyda nemoralis Thoms. as promoted by folic acid and its 4-amino- analogue. — J. Insect Physiol. 11: 431–442.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る