リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comparisons in temperature and photoperiodic-dependent diapause induction between domestic and wild mulberry silkworms」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comparisons in temperature and photoperiodic-dependent diapause induction between domestic and wild mulberry silkworms

Yokoyama, Takeshi Saito, Shigeru Shimoda, Misato Kobayashi, Masakazu Takasu, Yoko Sezutsu, Hideki Kato, Yoshiomi Tominaga, Makoto Mizoguchi, Akira Shiomi, Kunihiro 信州大学 DOI:10.1038/s41598-021-87590-4

2023.01.19

概要

The bivoltine strain of the domestic silkworm, Bombyx mori, has two generations per year. It shows a facultative diapause phenotype determined by environmental conditions, including photoperiod and temperature, and nutrient conditions during embryonic and larval development of the mother. However, it remains unclear how the environmental signals received during development are selectively utilized as cues to determine alternative diapause phenotypes. We performed a comparative analysis between the Kosetsu strain of B. mori and a Japanese population of the wild mulberry silkworm B. mandarina concerning the hierarchical molecular mechanisms in diapause induction. Our results showed that for the Kosetsu, temperature signals during the mother's embryonic development predominantly affected diapause determination through the thermosensitive transient receptor potential ankyrin 1 (TRPA1) and diapause hormone (DH) signaling pathways. However, embryonic diapause in B. mandarina was photoperiod-dependent, although the DH signaling pathway and thermal sensitivity of TRPA1 were conserved within both species. Based on these findings, we hypothesize that TRPA1-activated signals are strongly linked to the signaling pathway participating in diapause induction in Kosetsu to selectively utilize the temperature information as the cue because temperature-dependent induction was replaced by photoperiodic induction in the TRPA1 knockout mutant.

この論文で使われている画像

参考文献

1. Nakagaki, M., Takei, R., Nagashima, E. & Yaginuma, T. Cell-cycles in embryos of the silkworm, Bombyx-mori - G2-arrest at diapause stage. Roux Arch. Dev. Biol. 200, 223–229 (1991).

2. Yamashita, O. & Hasegawa, K. in Comprehensive Insect Physiology, Biochemistry and Pharmacology Vol. 1 (eds G.A. Kerkut & L.I. Gilbert) 407–434 (Pergamon Press, 1985).

3. Kogure, M. The influence of light and temperature on certain characters of the silkworm, Bombyx mori. J. Dep. Agric. Kyushu Univ.

4, 1–93 (1933). 4. Watanabe, K. Studies on the voltinism of the silkworm, Bombyx mori. Bull. Sericult. Exp. Sta. (Tokyo) 6, 411–455 (1924).

5. Denlinger, D. L., Yocum, G. D. & Rinehart, J. P. in Insect Endocrinology (ed L.I. Gilbert) 430–463 (Academic Press, 2012).

6. Shimizu, I. & Hasegawa, K. Photoperiodic induction of diapause in the silkworm, Bombyx mori: location of the photoreceptor using a chemiluminescent paint. Physiol. Entomol. 13, 81–88 (1988).

7. Tsuchida, K. & Yoshitake, N. Effect of different artificial diets on diapause induction under controlled temperature and photoperiod in the silkworm, Bombyx mori L. Physiol. Entomol. 8, 333–338 (1983).

8. Shiomi, K. et al. Disruption of diapause induction by TALEN-based gene mutagenesis in relation to a unique neuropeptide signal- ing pathway in Bombyx. Sci. Rep. 5, 15566 (2015).

9. Tsuchiya, R. et al. Maternal GABAergic and GnRH/corazonin pathway modulates egg diapause phenotype of the silkworm Bombyx mori. Proc. Natl. Acad. Sci. U. S. A. 118, e2020028118 (2021).

10. Sato, Y. et al. Precursor polyprotein for multiple neuropeptides secreted from the subesophageal ganglion of the silkworm bombyx- mori - characterization of the cdna-encoding the diapause hormone precursor and identification of additional peptides. Proc. Natl. Acad. Sci. U. S. A. 90, 3251–3255 (1993).

11. Hagino, A., Kitagawa, N., Imai, K., Yamashita, O. & Shiomi, K. Immunoreactive intensity of FXPRL amide neuropeptides in response to environmental conditions in the silkworm, Bombyx mori. Cell Tissue Res. 342, 459–469 (2010).

12. Yamashita, O., Imai, K., Saito, H., Shiomi, K. & Sato, Y. Phe-X-Pro–Arg–Leu-NH(2) peptide producing cells in the central nervous system of the silkworm, Bombyx mori. J. Insect. Physiol. 44, 333–342 (1998).

13. Homma, T. et al. G protein-coupled receptor for diapause hormone, an inducer of Bombyx embryonic diapause. Biochem. Biophys. Res. Commun. 344, 386–393 (2006).

14. Sato, A. et al. Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. U. S. A. 111, E1249-1255 (2014).

15. Goldsmith, M. R., Shimada, T. & Abe, H. The genetics and genomics of the silkworm, Bombyx mori. Annu. Rev. Entomol. 50, 71–100 (2005).

16. Sasaki, C. On the affinity of our wild and domestic silkworms. Annot. Zool. Jap. 2, 33–41 (1898).

17. Yoshitake, N. Phylogenetic aspects on the origin of Japanese race of the silkworm, Bombyx mori L. J. Seric. Sci. Jpn. 37, 83–87 (1968).

18. Yukuhiro, K., Sezutsu, H., Itoh, M., Shimizu, K. & Banno, Y. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial Genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Mol. Biol. Evol. 19, 1385–1389 (2002).

19. Miyata, T. A generic revision of the Japanese Bombycidae, with description of a new genus (Lepidoptera). Tinea 8, 190–199 (1970).

20. Murakami, A. & Imai, H. T. Cytological evidence for holocentric chromosomes of the silkworms, Bombyx mori and B. mandarina, (Bombycidae, Lepidoptera). Chromosoma 47, 167–178 (1974).

21. Yokoyama, T. Reproduction and natural enemies of the wild murberry silkmoth (Bombyx mandarina). Sanshi-Konchu Biotec 88, 25–38 (2019).

22. Xia, Q. Y. et al. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326, 433–436 (2009).

23. Umeya, Y. Embryonic hibernation and diapause in insects from the viewpoint of the hibernating-eggs of the silkworm. Bull. Sericul. Exp. Sta. 12, 393–480 (1946).

24. Yamashita, O. & Yaginuma, T. in Insects at Low Temperature (eds Jr. R. E. Lee & D. L. Denlinger) 424–445 (Chapman and Hall, 1991).

25. Komoto, N. & Tomita, S. Distribution and seasonal occurrence of the wild murberry silkmoth (Bombyx mandarina) in Japan. Sanshi-Konchu Biotec 88, 7–23 (2019).

26. Ohmura, S. Research on the behavior and ecological characteristics of the wild silkworm, Bombyx mandarina. Bull. Seric. Exp. Sta. Jpn. 13, 79–130 (1950).

27. Kobayashi, J. Effects of photoperiod on the induction of egg diapause of tropical races of the domestic silkworm, Bombyx-Mori, and the wild silkworm, Bombyx-mandarina. JARQ Jpn. Agric. Res. Q. 23, 202–205 (1990).

28. Xu, W. H., Sato, Y. & Yamashita, O. Molecular characterization of the cDNA encoding diapause hormone and pheromone biosyn- thesis activating neuropeptide in Bombyx mandarina. J. Seric. Sci. Jpn. 68, 373–379 (1999).

29. Li, T. B. et al. Diverse sensitivities of TRPA1 from different mosquito species to thermal and chemical stimuli. Sci. Rep. https://doi. org/10.1038/s41598-019-56639-w (2019).

30. Zhong, L. X. et al. Thermosensory and nonthermosensory isoforms of drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP channel. Cell Rep. 1, 43–55 (2012).

31. Denlinger, D. L., Hahn, D. A., Merlin, C., Holzapfel, C. M. & Bradshaw, W. E. Keeping time without a spine: what can the insect clock teach us about seasonal adaptation?. Philos. Trans. R. Soc. Lond. B https://doi.org/10.1098/rstb.2016.0257 (2017).

32. Kobayashi, J. Effects of photoperiod on the duration of pupal stage of the wild silkworm, Bombyx mandarina Moore. Wild Silkmoths ’89-’90, 57–64 (1991).

33. Saito, S. et al. Heat and noxious chemical sensor, chicken TRPA1, as a target of bird repellents and identification of its structural determinants by multispecies functional comparison. Mol. Biol. Evol. 31, 708–722 (2014).

34. Saito, S., Saito, C. T., Nozawa, M. & Tominaga, M. Elucidating the functional evolution of heat sensors among Xenopus species adapted to different thermal niches by ancestral sequence reconstruction. Mol. Ecol. 28, 3561–3571 (2019).

35. Takasu, Y., Tamura, T., Sajwan, S., Kobayashi, I. & Zurovec, M. The use of TALENs for nonhomologous end joining mutagenesis in silkworm and fruitfly. Methods 69, 46–57 (2014).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る