リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Photoperiodic gene expression of insulin receptor is associated with diapause regulation in silkworm」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Photoperiodic gene expression of insulin receptor is associated with diapause regulation in silkworm

Iwamoto, Aya Egi, Yuichi Sakamoto, Katsuhiko 神戸大学

2023.12.20

概要

Bivoltine silkworms (Bombyx mori) are destined to respectively produce diapause or non-diapause eggs when they are reared under short or long days during the larval stage. The insulin signaling pathway is thought to play an essential role in regulating diapause in various insect species, but its involvement in silkworm diapause programming has not been investigated in detail. Therefore, we examined day-night expression of the insulin receptor (InR) gene in the silkworm larval brain under different photoperiods or in night interruption experiments in which larvae were exposed to light for 2 h during the nighttime of short days. Expression of the InR gene was photoperiod-dependent and InR mRNA levels decreased with increasing daylength. As the daylength increased, expression during the nighttime decreased to lower stable levels earlier than that during the daytime. During night interruptions that induced non-diapause, the nighttime expression of InR decreased to low levels like those during long days, although daytime expression was only moderately decreased. Nighttime InR expression was downregulated in silkworms reared under non-diapause-inducing conditions (long days and night interruptions). In contrast, abundant InR was expressed during the day and night in short days that induced diapause. Our findings suggested that InR expression in the larval brain is associated with programming the diapause status in the next generation of silkworms. Downregulated InR might suppress the insulin signaling pathway and cause non-diapause induction in the next generation.

この論文で使われている画像

参考文献

1.

Tauber MJ, Tauber CA, Masaki S. Seasonal Adaptations of Insects. Oxford, Oxford University Press, 1986.

2.

Denlinger DL. Insect Diapause. Cambridge, Cambridge University Press, 2022.

3.

Sim C, Denlinger DL. Insulin signaling and the regulation of insect diapause. Front Physiol. 2013; 4: 189.

4.

Miki T, Shinohara T, Chafino S, Noji S, Tomioka K. Photoperiod and temperature separately regulate nymphal

development through JH and insulin/TOR signaling pathways in an insect. Proc Natl Acad Sci USA. 2022; 117: 55255531.

5.

Li HY, Wang T, Yang YP, Geng SL, Xu WH. TGF-β signaling regulates p-Akt levels via PP2A during diapause entry

in the cotton bollworm, Helicoverpa armigera. Insect Biochem Mol Biol. 2017; 87: 165-173.

6.

Williams KD, Busto M, Suster ML, So AK, Ben-Shahar Y, Leevers SJ, Sokolowski MB. Natural variation in

Drosophila melanogaster diapause due to the insulin-regulated PI3-kinase. Proc Natl Acad Sci USA. 2006; 103:

15911-15915.

7.

Sim C, Denlinger DL. Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens.

Proc Natl Acad Sci USA. 2008; 105: 6777-6781.

8.

Anton S. The coming of age of insulin-signaling in insects. Front Physiol. 2014; 5: 216.

9.

Ragland GJ, Keep E. Comparative transcriptomics support evolutionary convergence of diapause responses across

Insecta. Physiol Entomol. 2017; 42: 246-256.

10.

Barberà M, Cañas-Cañas R, Martínez-Torres D. Insulin-like peptides involved in photoperiodism in the aphid

Acyrthosiphon pisum. Insect Biochem Mol Biol. 2019; 112: 103185.

11.

Watanabe K. Studies on the voltinism of the silkworm, Bombyx mori. Bull Seric Exp Stn. 1924; 6: 411-455 (In

Japanese).

12.

Kogure M. The influence of light and temperature on certain characters of the silkworm, Bombyx mori. J Dept Agr

Kyushu Univ. 1933; 4: 1-93.

13.

Fukuda S. The production of the diapause eggs by transplanting the suboesophageal ganglion in the silkworm. Proc

Jpn Acad. 1951; 27: 672-677.

14.

Fukuda S. Function of the pupal brain and suboesophageal ganglion in the production of non-diapause eggs in the

silkworm. Annot Zool Jpn. 1952; 25: 149-155.

15.

Hasegawa K. Studies on the voltinism in the silkworm, Bombyx mori L., with special reference to the organs

concerning determination of voltinism (a preliminary note). Proc Jpn Acad. 1951; 27: 667-671.

16.

Yamashita O, Hasegawa K. Further studies on the mode of action of the diapause hormone in the silkworm, Bombyx

mori L. J Insect Physiol. 1966; 12: 957-962.

17.

Hasegawa K, Shimizu I. In vivo and in vitro photoperiodic induction of diapause using isolated brain-suboesophageal

ganglion complexes of the silkworm, Bombyx mori. J Insect Physiol. 1987; 33: 959-966.

18.

Saunders DS. Dormancy, diapause, and the role of the circadian system in insect photoperiodism. Annu Rev Entomol.

2020; 65: 373-389.

European Journal of Biological Research 2023; 13(4): 211-217

Iwamoto et al. InR expression and diapause in silkworms

19.

217

Egi Y, Sakamoto K. Genome-wide screening of genes involved in programming diapause in the next generation in

silkworm, Bombyx mori (Lepidoptera: Bombycidae). Eur J Entomol. 2022; 119: 405-412.

20.

Egi Y, Akitomo S, Fujii T, Banno Y, Sakamoto K. Silkworm strains that can be clearly destined towards either

embryonic diapause or direct development by adjusting a single ambient parameter during the preceding generation.

Entomol Sci. 2014; 17: 396-399.

21.

Sumimoto K. Feeding rhythms in the silkworm Bombyx mori L.: Design of actographs, and analysis of

rhythmpatterns. Environ Control Biol. 1987; 25: 75-78 (In Japanese).

22.

Chowański S, Walkowiak-Nowicka K, Winkiel M, Marciniak P, Urbański A, Pacholska-Bogalska J. Insulin-like

peptides and cross-talk with other factors in the regulation of insect metabolism. Front Physiol. 2021; 12: 701203.

23.

Erion R, Sehgal A. Regulation of insect behavior via the insulin-signaling pathway. Front Physiol. 2013; 4: 353.

24.

Ragland GJ, Denlinger DL, Hahn DA. Mechanisms of suspended animation are revealed by transcript profiling of

diapause in the flesh fly. Proc Natl Acad Sci USA. 2010; 107: 14909-14914.

25.

Tatar M, Yin CM. Slow aging during insect reproductive diapause: Why butterflies, grasshoppers and flies are like

worms. Exp Gerontol. 2001; 36: 723-738.

26.

Arpagaus M. Vertebrate insulin induces diapause termination in Pieris brassicae pupae. Roux’s Arch Dev Biol. 1987;

196: 527-530.

27.

Chen J, Cui DN, Ullah H, Li S, Pan F, Xu CM, et al. The function of LmPrx6 in diapause regulation in Locusta

migratoria through the insulin signaling pathway. Insecta. 2020; 11: 763.

European Journal of Biological Research 2023; 13(4): 211-217

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る