リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The Origin of Large, Long-Period Near-Fault Ground Velocities During Surface-Breaking Strike-Slip Earthquakes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The Origin of Large, Long-Period Near-Fault Ground Velocities During Surface-Breaking Strike-Slip Earthquakes

Kaneko, Yoshihiro Goto, Hiroyuki 京都大学 DOI:10.1029/2022GL098029

2022.05.28

概要

Records of near-fault ground motions from recent surface-breaking earthquakes are characterized by large (> a few m/s), long-period (a few seconds) ground velocity pulses, which may pose significant hazard for tall buildings and large infrastructures. Yet, the generation mechanism is not well understood. Here, using spontaneous rupture simulations, we examine the origin of large velocity pulses observed during the 2016 Mw7.0 Kumamoto (Japan) earthquake. We show that near-fault waveform data as well as seismologically estimated moment and radiated energy can be well reproduced by a relatively simple model with uniform along-strike pre-stress and frictional properties. Our results suggest that large, long-period ground velocities are caused by the dynamic interaction of propagating rupture and the Earth's surface, which is enhanced by reflected waves from the boundaries of low-velocity layers. Such a generic mechanism suggests that large, long-period ground motion is a common occurrence in near-fault regions during surface-breaking, strike-slip earthquakes.

この論文で使われている画像

参考文献

Abrahamson, N. A., & Somerville, P. G.(1996). Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake. Bulletin of the Seismological Society of America, 86(IB), S93-S99. https://doi.org/10.1785/bssaO86OlbOs93

Ampuero, J.-P. (2002). Etude physique et numrique de la nuclation des sismes, PhD thesis, Univ. Paris 7, Denis Diderot, Paris.

Andrews, D. J., & Ben-Zion, Y.(1997). Wrinkle-like slip pulse on a fault between different materials. Journal of Geophysical Research, 102, 553-571.https://doi.org/10.1029/96JB02856

Asano, K., & Iwata, T. (2016). Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data. Earth Planets and Space, 68(1), 147.

Barka, A.(1999). The 17 august 1999 Izmil earthquake. Science, 255(5435), 1858-1859. https://doi.org/10.! 126/science.285.5435.1858

Bernard, P., & Baumont, D. (2005). Shear Mach wave characterization for kinematic fault rupture models with constant supershear rupture veloc­ ity. Geophysical Journal International, 162,431-447. https://doi.org/10.!11l/j.l365-246x.2005.02611.x

Beroza, G. C., & Mikumo, T.(1996). Short slip duration in dynamic rupture in the presence of heterogeneous fault properties. Journal of Geophysical Research, 101(^10), 22449-22460. https://doi.org/10.1029/96jb02291

Bizzarri, A., & Cocco, M. (2005). 3D dynamic simulations of spontaneous rupture propagation governed by different constitutive laws with rake rotation allowed. Annals of Geophysics, 45(2)

Boore, D. M., & Joyner, W. B.(1997). Site amplifications for generic rock sites. Bulletin of the Seismological Society of America, 87(2), 327-341. https://doi.Org/10.l 785/bssaO87OO2O327

Cochran, E. S., Li, Y.-G., Shearer, P. M., Barbot, S., Fialko, Y., & Vidale, J. E. (2009). Seismic and geodetic evidence for extensive, long-lived fault damage zones. Geology, 37(4), 315-318. https://doi.0rg/lO.l 130/g25306a.l

Convers, J. A., & Newman, A. V. (2011).Global evaluation of large earthquake energy from 1997 through mid-2010. Journal of Geophysical Research, 7/6(B8). https://doi.org/10.1029/2010JB007928

Dalguer, L. A., Miyake, H., Day, S. M., & Irikura, K. (2008). Surface rupturing and buried dynamic-rupture models calibrated with statistical observations of past earthquakes. Bulletin of the Seismological Society of America, 98(3),1147-1161. https://doi.org/10.1785/0120070134

Day, S. M., Dalguer, L. A., Lapusta, N., & Liu, Y. (2005). Comparison of finite difference and boundary integral solutions to three-dimensional

spontaneous rupture. Journal of Geophysical Research,110, B12307. https://doi.org/10.1029/2005JB003813

Dunham, E. M., & Archuleta, R. J. (2004). Evidence for a supershear transition during the 2002 Denali fault earthquake. Bulletin of the Seismo­ logical Society of America, 94(6B), 256-268. https://doi.org/10.1785/0120040616

Dunham, E. M., & Archuleta, R. J. (2005). Near-source ground motion from steady state dynamic rupture pulses. Geophysical Research Letters, 32, L03302. https://doi.org/10.1029/2004GL021793

Fukahata, Y., & Hashimoto, M. (2016). Simultaneous estimation of the dip angles and slip distribution on the faults of the 2016 Kumamoto earth­ quake through a weak nonlinear inversion of InSAR data. Earth Planets and Space, 68(1), 1-10. https://doi.0rg/lO.l 186/s40623-016-0580-4

Goto, H., & Sawada, S. (2010). Trade-offs among dynamic parameters inferred from results of dynamic source inversion. Bulletin of the Seismo­ logical Society of America, 700(3), 910-922. https://doi.org/10.1785/0120080250

Goto, H., Toyomasu, A., & Sawada, S. (2019). Delayed subevents during the Mw6.2 first shock of the 2016 Kumamoto, Japan, earthquake. Journal of Geophysical Research, 124, 13112-13123. https://d0i.0rg/l0.1029/2019JB018583

Hao, J., Ji, C., & Yao, Z. (2017). Slip history of the 2016 Mw 7.0 Kumamoto earthquake: Intraplate rupture in complex tectonic environment. Geophysical Research Letters,右(2), 743-750. https://doi.org/10.1002/2016gl071543

Harris, R. A., Barall,M., Aagaard, B., Ma, S., Roten, D., Olsen, K., et al.(2018). A suite of exercises for verifying dynamic earthquake rupture codes. Seismological Research Letters, 89(3),1146-1162. https://doi.org/10.1785/0220170222

Heaton, T. H.(1990). Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors, 64,1-20. https://doi.org/10.1016/003l-9201(90)90002-f

Hu, E, Oglesby, D. D., & Chen, X. (2019). The sustainability of free-surface-induced supershear rupture on strike-slip faults. Geophysical Research Letters, 46(16), 9537-9543. https://doi.org/!0.1029/2019gl084318

Huang, Y, & Ampuero, J.-P. (2011).Pulse-like ruptures induced by low-velocity fault zones. Journal of Geophysical Research, 776(B12). https:// doi.org/10.1029/201 ljb008684

Ida, Y.(1972). Cohesive force across the tip of a longitudinal-shear crack and Griffith's specific surface energy. Journal of Geophysical Research, 77, 3796-3805. https://doi.org/!0.1029/JB077i020p03796

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る