リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Relationships between seismicity and slow slip events at New Zealand's northern and central Hikurangi subduction zone inferred from detailed spatiotemporal earthquake analysis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Relationships between seismicity and slow slip events at New Zealand's northern and central Hikurangi subduction zone inferred from detailed spatiotemporal earthquake analysis

Tateiwa, Kazuya 東北大学

2023.09.25

概要

1.1. Slow earthquakes and related seismic activity
Subduction zones, where plates converge, produce various phenomena due to dynamic
interaction between the subducting plate and the overlying plate. An earthquake cycle consists of a
sequence of large similar earthquakes that rupture the same portion of the plate boundary, which may
be locked and accumulate stress until the next large earthquake. In addition to ordinary earthquakes,
slow earthquakes, some of them called slow slip events or SSEs, that are not felt have been discovered
recently (Obara, 2020). Understanding the relationship between these different types of earthquakes
is essential to consider the occurrence of large interplate earthquakes in the future.
Slow earthquakes have been observed worldwide, mainly in the subduction zone, since 1990
(Figure 1.1; Obara, 2020). Slow earthquake is a general term for a phenomenon in which fault rupture
proceeds more slowly than regular earthquakes and has a very wide range of duration and moment
(Figure 1.2; Ide et al., 2007). In order of the characteristic duration, slow earthquakes are classified
into low-frequency earthquakes (~ a few seconds), low-frequency tremors, or tremors (~ a few tens of
seconds), very low-frequency earthquakes (from 10 seconds to a few minutes), short-term slow slip
events (from a few days to a few tens of days), and long-term slow slip events (from a few months to
a few years). Many slow earthquakes are observed at the updip or downdip of slip area of great plate
boundary earthquakes (Figure 1.3).
Since the slip of slow earthquakes relaxes the strain at the plate boundary, just like interplate
earthquakes, researchers have considered relationships between the activity of slow earthquakes and
great plate boundary earthquakes. About a month before the 2011 M9 Tohoku-oki earthquake in
northeast Japan, two sequences of SSE migrated toward the rupture initiation point of the Tohoku-oki
mainshock, indicating that the slow slip unlocked the plate interface (Kato et al., 2012). Before the
2014 M8.2 Iquique earthquake in northern Chile, multiple sequences of earthquake migrations,
indicating SSEs, occurred (Kato and Nakagawa, 2014). The last sequence and SSE migrated toward
the nucleation point of the Iquique mainshock. Obara and Kato (2016) pointed out the possibility that
SSEs can periodically load onto the plate boundary fault and modulate the recurrence time of large
earthquakes. Since slow earthquakes are sensitive to surrounding stress change (Miyazawa & Mori,
2005; Ide, 2010), Obara and Kato (2016) suggested that slow earthquakes can be used as stress meters
for megathrust patches adjacent to slow earthquake regions.
SSE-related seismic activities were also detected for smaller interplate and other earthquakes,
not only for great plate boundary earthquakes. ...

この論文で使われている画像

参考文献

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic

Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705

Álvarez-Gómez, J.A. (2019). FMC - Earthquake focal mechanisms data management, cluster and

Classification. SoftwareX, 9, 299–307. https://doi.org/10.1016/j.softx.2019.03.008

Antriasian, A., Harris, R.N., Tréhu, A.M., Henrys, S.A., Phrampus, B.J., Lauer, R., Gorman, A.R.,

IPecher, I.A., & Barker, D. (2019). Thermal regime of the Northern Hikurangi margin, New Zealand.

Geophysical Journal International, 216(2), 1177–1190. https://doi.org/10.1093/gji/ggy450

Barnes, P.M., Lamarche, G., Bialas, J., Pecher, I., Henrys, S., Pecher, I., Netzeband, G.L., Greinert, J.,

Mountjoy, J.J., Pedley, K., & Crutchley, G. (2010). Tectonic and geological framework for gas

hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Marine Geology,

272(1–4), 26-48. https://doi.org/10.1016/j.margeo.2009.03.012

Beanland, S., & Haines, J. (1998). The kinematics of active deformation in the North Island, New

Zealand, determined from geological strain rates. New Zealand Journal of Geology and Geophysics,

41(4), 311-323. https://doi.org/10.1080/00288306.1998.9514813

Bell, R., Sutherland, R., Barker, D.H.N., Henrys, S., Bannister, S., Wallace, L., & Beavan, J. (2010).

Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of

repeated Gisborne slow slip events. Geophysical Journal International, 180(1), 34–48.

https://doi.org/10.1111/j.1365-246x.2009.04401.x

Bormann, P., & Saul, J. (2008). The New IASPEI Standard Broadband Magnitude mB. Seismological

Research Letters, 79(5), 698–705. https://doi.org/10.1785/gssrl.79.5.698

Boulton, C., Niemeijer, A.R., Hollis, C.J., Townend, J., Raven, M.D., Kulhanek, D.K., & Shepherd,

C.L. (2019). Temperature-dependent frictional properties of heterogeneous Hikurangi Subduction

Zone

input

sediments,

ODP

Site

1124.

Tectonophysics,

757,

123–139.

https://doi.org/10.1016/j.tecto.2019.02.006

Bratt, S.R., & Nagy, W. (1991). The LocSAT Program, Science Applications International Corporation

(SAIC), San Diego.

Chamberlain, C.J., Boese, C.M., & Townend, J. (2017). Cross-correlation-based detection and

characterisation of microseismicity adjacent to the locked, late-interseismic Alpine Fault, South

Westland,

New

Zealand.

Earth

and

Planetary

Science

Letters,

457,

63-72.

https://doi.org/10.1016/j.epsl.2016.09.061

Chamberlain, C.J., Frank, W.B., Lanza, F., Townend, J., & Warren‐Smith, E. (2021). Illuminating the

Pre‐, Co‐, and Post‐Seismic Phases of the 2016 M7.8 Kaikōura Earthquake With 10 Years of

Seismicity. Journal of Geophysical Research: Solid Earth, 126(8), e2021JB022304.

168

https://doi.org/10.1029/2021JB022304

Chow, B., Kaneko, Y., Tape, C., Modrak, R., Mortimer, N., Bannister, S., & Townend, J. (2022). Strong

upper-plate heterogeneity at the Hikurangi subduction margin (North Island, New Zealand) imaged

by adjoint tomography. Journal of Geophysical Research: Solid Earth, 127, e2021JB022865.

https://doi.org/10.1029/2021JB022865

Delahaye, E.J., Townend, J., Reyners, M.E., & Rogers, G. (2009). Microseismicity but no tremor

accompanying slow slip in the Hikurangi subduction zone, New Zealand, Earth and Planetary

Science Letters, 277(1–2), 21-28. https://doi.org/10.1016/j.epsl.2008.09.038

Dieterich, J.H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations.

Journal

of

Geophysical

Research:

Solid

Earth,

84(B5),

2161–2168.

https://doi.org/10.1029/JB084iB05p02161

Dimitrova, L., Wallace, L.M., Haines, J., & Williams, C. (2016). High resolution view of active

tectonic deformation along the Hikurangi subduction margin and the Taupo Volcanic Zone, New

Zealand.

New

Zealand

Journal

Geology

and

Geophysics,

59(1),

70–85.

https://doi.org/10.1080/00288306.2015.1127825

Eaton, J.P. (1996). Microearthquake Seismology in USGS Volcano and Earthquake Hazards Studies:

1953-1995.

Eberhart-Phillips, D., & Bannister, S. (2015). 3–D imaging of the northern Hikurangi subduction zone,

New Zealand: variations in subducted sediment, slab fluids and slow slip. Geophysical Journal

International, 201(2), 838–855. https://doi.org/10.1093/gji/ggv057

Eberhart-Phillips, D., Bannister, S., & Reyners, M. (2017). Deciphering the 3–D distribution of fluid

along the shallow Hikurangi subduction zone using P- and S-wave attenuation. Geophysical Journal

International, 211(2), 1032–1045. https://doi.org/10.1093/gji/ggx348

Eberhart-Phillips, D., Bannister, S., Reyners, M., & Henrys, S. (2020). New Zealand Wide model 2.2

seismic velocity and Qs and Qp models for New Zealand [Data set]. Zenodo.

https://doi.org/10.5281/zenodo.3779523

Eberhart-Phillips, D., Reyners, M., Bannister, S., Chadwick, M., & Ellis, S. (2010). Establishing a

Versatile 3-D Seismic Velocity Model for New Zealand. Seismological Research Letters, 81(6),

992–1000. https://doi.org/10.1785/gssrl.81.6.992

Eberhart-Phillips, D., Reyners, M., Chadwick, M., & Chiu, J.M. (2005). Crustal heterogeneity and

subduction processes: 3-D Vp, Vp/Vs and Q in the southern North Island, New Zealand.

Geophysical

Journal

International,

162(1),

270–288.

https://doi.org/10.1111/j.1365-

246X.2005.02530.x

Evanzia, D., Lamb, S., Savage, M.K., & Stern, T. (2019). Illumination of deformation by bending

stresses within the southern Hikurangi double Benioff zone. New Zealand Journal of Geology and

Geophysics, 62(1), 111-120. https://doi.org/10.1080/00288306.2018.1532439

169

Fukuda, J.I. (2018). Variability of the space-time evolution of slow slip events off the Boso Peninsula,

central Japan, from 1996 to 2014. Journal of Geophysical Research: Solid Earth, 123(1), 732–760.

https://doi.org/10.1002/2017JB014709

Gale, N., Gledhill, K., Chadwick, M., & Wallace, L.M. (2015). The Hikurangi Margin Continuous

GNSS and Seismograph Network of New Zealand. Seismological Research Letters, 86(1), 101–108.

https://doi.org/10.1785/0220130181

Gangi, A.F. (1978). Variation of whole and fractured porous rock permeability with confining pressure.

International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(5),

249-257. https://doi.org/10.1016/0148-9062(78)90957-9

GeoNet. (no date a). Historical Location Information GROPE. Retrieved June 20, 2023, from

https://www.geonet.org.nz/data/supplementary/earthquake_location_grope

GeoNet. (no date b). Historical Location Information GROPE. Retrieved June 20, 2023, from

https://www.geonet.org.nz/data/supplementary/earthquake_location

GeoNet.

(no

date

c).

GNSS

Time

Series

Notes.

Retrieved

July

4,

2023,

from

https://www.geonet.org.nz/data/supplementary/gnss_time_series_notes

GNS Science. (2023a). GeoNet Aotearoa New Zealand Earthquake Catalogue [Dataset]. GNS Science,

GeoNet. https://doi.org/10.21420/0S8P-TZ38

GNS Science. (2023b). GeoNet Aotearoa New Zealand Earthquake Moment Tensor Solutions

[Dataset]. GNS Science, GeoNet. https://doi.org/10.21420/MMJ9-CZ67

GNS Science. (2023c). GeoNet Aotearoa GeoNet Aotearoa New Zealand Seismic Digital Waveform

Dataset [Dataset]. GNS Science, GeoNet. https://doi.org/10.21420/G19Y-9D40

GNS Science. (2023d). GeoNet Aotearoa New Zealand Continuous GNSS Network - Time Series

Dataset [Dataset]. GNS Science, GeoNet. https://doi.org/10.21420/30F4-1A55

Gomberg, J., Baxter, P., Smith, E., Ariyoshi, K., & Chiswell, S.M. (2020). The ocean's impact on slow

slip

events.

Geophysical

Research

Letters,

47(14),

e2020GL087273.

https://doi.org/10.1029/2020GL087273

Gutenberg, B., & Richter, C.F. (1941). Seismicity of the earth. Geological Society Of America, Special

Papers, 34.

Haines, A.J. (1981). A local magnitude scale for New Zealand earthquakes. Bulletin of the

Seismological Society of America, 71(1), 275-294. https://doi.org/10.1785/BSSA0710010275

Haines, A.J., & Wallace, L.M. (2020). New Zealand‐wide geodetic strain rates using a physics‐based

approach.

Geophysical

Research

Letters,

47,

e2019GL084606.

https://doi.org/10.1029/2019GL084606

Hainzl, S. (2004). Seismicity patterns of earthquake swarms due to fluid intrusion and stress triggering.

Geophysical

Journal

International,

159(3),

246X.2004.02463.x

170

1090-1096.

https://doi.org/10.1111/j.1365-

Hara, S., Fukahata, Y., & Iio, Y. (2019). P-wave first-motion polarity determination of waveform data

in

western

Japan

using

deep

learning.

Earth,

Planets

and

Space,

71,

127.

https://doi.org/10.1186/s40623-019-1111-x

Hardebeck, J.L., & Shearer, P.M. (2002). A new method for determining firstmotion focal mechanisms.

Bulletin

of

the

Seismological

Society

of

America,

92(6),

2264-2276.

https://doi.org/10.1785/0120010200

Hardebeck, J.L., & Shearer, P.M. (2003). Using S/P Amplitude Ratios to Constrain the Focal

Mechanisms of Small Earthquakes. Bulletin of the Seismological Society of America, 93(6), 24342444. https://doi.org/10.1785/0120020236

Harris, R.A. (1998). Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications

for Seismic Hazard. Journal of Geophysical Research: Solid Earth, 103(B10), 24347– 24358.

https://doi.org/10.1029/98JB01576

Heise, W., Caldwell, T.G., Bannister, S., Bertrand, E.A., Ogawa, Y., Bennie, S.L., & Ichihara, H.

(2017). Mapping subduction interface coupling using magnetotellurics: Hikurangi margin, New

Zealand.

Geophysical

Research

Letters,

44(18),

9261–9266.

https://doi.org/10.1002/2017GL074641

Heise, W., Ogawa, Y., Bertrand, E.A., Caldwell, T.G., Yoshimura, R., Ichihara, H., Bennie, S.L., Seki,

K., Saito, Z., Matsunaga, Y., Suzuki, A., Kishita, T., & Kinoshita, Y. (2019). Electrical resistivity

imaging of the inter-plate coupling transition at the Hikurangi subduction margin, New Zealand.

Earth and Planetary Science Letters, 524, 115710. https://doi.org/10.1016/j.epsl.2019.115710

Hill, D.P. (1977). A model for earthquake swarms, Journal of Geophysical Research, 82(8), 1347–

1352. https://doi.org/10.1029/JB082i008p01347

Hirata, T. (1989). A correlation between the b value and the fractal dimension of earthquakes. Journal

of

Geophysical

Research:

Solid

Earth,

94(B6),

7507–7514.

https://doi.org/10.1029/JB094iB06p07507

Hughes, L., Chamberlain, C.J., Townend, J., & Thomas, A.M. (2021). A repeating earthquake catalog

from 2003 to 2020 for the Raukumara Peninsula, northern Hikurangi subduction margin, New

Zealand.

Geochemistry,

Geophysics,

Geosystems,

22,

e2021GC009670.

https://doi.org/10.1029/2021GC009670

Ide, S. (2010). Striations, duration, migration and tidal response in deep tremor. Nature, 466, 356–359.

https://doi.org/10.1038/nature09251

Ide, S., Beroza, G., Shelly, D., & Uchide, T. (2007). A scaling law for slow earthquakes. Nature, 447,

76–79. https://doi.org/10.1038/nature05780

Igarashi, T. (2010). Spatial changes of inter‐plate coupling inferred from sequences of small repeating

earthquakes

in

Japan.

Geophysical

https://doi.org/10.1029/2010GL044609

171

Research

Letters,

37(20),

L20304.

Ingebritsen, S.E., & Manning, C.E. (2010). Permeability of the continental crust: dynamic variations

inferred

from

seismicity

and

metamorphism.

Geofluids,

10,

193-205.

https://doi.org/10.1111/j.1468-8123.2010.00278.x

Kagan, Y.Y. (1991). 3-D rotation of double-couple earthquake sources. Geophysical Journal

International, 106(3), 709–716. https://doi.org/10.1111/j.1365-246x.1991.tb06343.x

Kato, A., & Nakagawa, S. (2014). Multiple slow-slip events during a foreshock sequence of the 2014

Iquique, Chile Mw 8.1 earthquake. Geophysical Research Letters, 41(15), 5420–5427.

https://doi.org/10.1002/2014GL061138

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of

Slow Slip Leading Up to the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science, 335(6069), 705-708.

https://doi.org/10.1126/science.1215141

Kennet, B.L.N. (1991). IASPEI 1991 Seismological Tables. Terra Nova, 3(2), 122-122.

https://doi.org/10.1111/j.1365-3121.1991.tb00863.x

Lin, J., & Stein, R.S. (2004). Stress triggering in thrust and subduction earthquakes, and stress

interaction between the southern San Andreas and nearby thrust and strike-slip faults. Journal of

Geophysical Research: Solid Earth, 109(B2), B02303. https://doi.org/10.1029/2003JB002607

Liu, X., Pan, M., Li, X., & Wang, J. (2017). B-Value Characteristics of Rock Acoustic Emission Under

Impact Loading. In: Shen, G., Wu, Z., Zhang, J. (eds) Advances in Acoustic Emission Technology,

Springer Proceedings in Physics, 179, Springer, Cham. https://doi.org/10.1007/978-3-319-290522_12

Liu, Y., & Rice, J.R. (2007). Spontaneous and triggered aseismic deformation transients in a

subduction

fault

model.

Journal

of

Geophysical

Research,

112(B09404).

https://doi.org/10.1029/2007JB004930

Lockner, D. (1993). The role of acoustic emission in the study of rock fracture. International Journal

of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7), 883-899.

https://doi.org/10.1016/0148-9062(93)90041-B

Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic earthquake location in 3D

and layered models. In Advances in seismic event location (pp. 101–134). Springer.

https://doi.org/10.1007/978-94-015-9536-0_5

Ma, S., & Eaton, D.W. (2011). Combining double-difference relocation with regional depth-phase

modelling to improve hypocentre accuracy. Geophysical Journal International, 185(2), 871–889.

https://doi.org/10.1111/j.1365-246X.2011.04972.x

Marone, C. (1998). Laboratory-derived friction laws and their application to seismic faulting. Annual

Review

of

Earth

and

Planetary

Sciences,

26(1),

643–696.

https://doi.org/10.1146/annurev.earth.26.1.643

Matsuno, M., Tagami, A., Okada, T., Matsumoto, S., Kawamura, Y., Iio, Y., Sato, T., Nakayama, T.,

172

Hirahara, S., Bannister, S., Ristau, J., Savage, M.K., Thurber, C.H., & Sibson, R.H. (2022). Spatial

and temporal stress field changes in the focal area of the 2016 Kaikōura earthquake, New Zealand:

multi-fault

process

interpretation.

Tectonophysics,

835,

229390.

https://doi.org/10.1016/j.tecto.2022.229390

Miyazawa, M., & Mori, J. (2005). Detection of triggered deep low-frequency events from the 2003

Tokachi-oki

earthquake.

Geophysical

Research

Letters,

32(10),

L10307.

https://doi.org/10.1029/2005GL022539

Mochizuki, K., Sutherland, R., Henrys, S., Bassett, D., Van Avendonk, H., Arai, R., Kodaira, S., Fujie,

G., Yamamoto, Y., Bangs, N., & Barker, D. (2019). Recycling of depleted continental mantle by

subduction and plumes at the Hikurangi Plateau large igneous province, southwestern Pacific Ocean.

Geology, 47(8), 795–798. https://doi.org/10.1130/G46250.1

Montuori, C., Falcone, G., Murru, M., Thurber, C., Reyners, M., & Eberhart-Phillips, D. (2010).

Crustal heterogeneity highlighted by spatial b-value map in the Wellington region of New Zealand.

Geophysical

Journal

International,

183(1),

451-460.

https://doi.org/10.1111/j.1365-

246X.2010.04750.x

Mortimer, N., & Parkinson, D. (1996). Hikurangi Plateau: A Cretaceous large igneous province in the

southwest Pacific Ocean. Journal of Geophysical Research: Solid Earth, 101(B1), 687– 696.

https://doi.org/10.1029/95JB03037

Müller, R.D., Sdrolias, M., Gaina, C., & Roest, W.R. (2008). Age, spreading rates, and spreading

asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9(4), Q04006.

https://doi.org/10.1029/2007GC001743

Nakajima, J., & Uchida, N. (2018). Repeated drainage from megathrusts during episodic slow slip.

Nature Geoscience, 11, 351–356. https://doi.org/10.1038/s41561-018-0090-z

Nishikawa, T., & Ide, S. (2018). Recurring slow slip events and earthquake nucleation in the source

region of the M 7 Ibaraki-Oki earthquakes revealed by earthquake swarm and foreshock activity.

Journal

of

Geophysical

Research:

Solid

Earth,

123(9),

7950–7968.

https://doi.org/10.1029/2018JB015642

Nishikawa, T., Matsuzawa, T., Ohta, K., Uchida, N., Nishimura, T., & Ide, S. (2019). The slow

earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories. Science,

365(6455), 808–813. https://doi.org/10.1126/science.aax5618

Nishikawa, T., Nishimura, T., & Okada, Y. (2021). Earthquake swarm detection along the Hikurangi

Trench, New Zealand: Insights into the relationship between seismicity and slow slip events.

Journal

of

Geophysical

Research:

Solid

Earth,

126,

e2020JB020618.

https://doi.org/10.1029/2020JB020618

Nishimura, T. (2014). Short-term slow slip events along the Ryukyu Trench, southwestern Japan,

observed by continuous GNSS. Progress in Earth and Planetary Science, 1(1), 22.

173

https://doi.org/10.1186/s40645-014-0022-5

Nishimura, T., Matsuzawa, T., & Obara, K. (2013). Detection of short-term slow slip events along the

Nankai Trough, southwest Japan, using GNSS data. Journal of Geophysical Research: Solid Earth,

118(6), 3112–3125. https://doi.org/10.1002/jgrb.50222

Obara, K. (2020). Characteristic activities of slow earthquakes in Japan. Proceedings of the Japan

Academy, Series B, 96(7), 297-315. https://doi.org/10.2183/pjab.96.022

Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes. Science, 353, 253257. https://doi.org/10.1126/science.aaf1512

Okada, T., Iio, Y., Matsumoto, S., Bannister, S., Ohmi, S., Horiuchi, S., Sato, T., Miura, T., Pettinga,

J., Ghisetti, F., & Sibson, R.H. (2019). Comparative tomography of reverse-slip and strike-slip

seismotectonic provinces in the northern South Island, New Zealand. Tectonophysics, 765, 172–186.

https://doi.org/10.1016/j.tecto.2019.03.016

Okada, T., Matsuzawa, T., Umino, N., Yoshida, K., Hasegawa, A., Takahashi, H., et al. (2015).

Hypocenter migration and crustal seismic velocity distribution observed for the inland earthquake

swarms induced by the 2011 Tohoku-Oki earthquake in NE Japan: Implications for crustal fluid

distribution and crustal permeability. Geofluids, 15(1–2), 293–309. https://doi.org/10.1111/gfl.

12112

Perez-Silva, A., Kaneko, Y., Savage, M., Wallace, L., & Warren-Smith, E. (2023). Characteristics of

slow slip events explained by rate-strengthening faults subject to periodic pore fluid pressure

changes.

Journal

of

Geophysical

Research:

Solid

Earth,

128(6),

e2022JB026332.

https://doi.org/10.1029/2022JB026332

Petersen, T., Gledhill, K., Chadwick, M., Gale, N.H., & Ristau, J. (2011). The New Zealand national

seismograph

network.

Seismological

Research

Letters,

82(1),

9–20.

https://doi.org/10.1785/gssrl.82.1.9

Raggiunti, M., Keir, D., Pagli, C., & Lavayssière, A. (2023). Evidence of fluid induced earthquake

swarms from high resolution earthquake relocation in the Main Ethiopian Rift. Geochemistry,

Geophysics, Geosystems, 24(4), e2022GC010765. https://doi.org/10.1029/2022GC010765

Reyes, A.G., Ellis, S.M., Christenson, B.W., & Henrys, S. (2022). Fluid flowrates and compositions

and water–rock interaction in the Hikurangi margin forearc, New Zealand. Chemical Geology, 614,

121169. https://doi.org/10.1016/j.chemgeo.2022.121169

Reyners, M., & Eberhart-Phillips, D. (2009). Small earthquakes provide insight into plate coupling

and fluid distribution in the Hikurangi subduction zone, New Zealand. Earth and Planetary Science

Letters, 282(1–4), 299-305. https://doi.org/10.1016/j.epsl.2009.03.034

Reyners, M., Eberhart-Phillips, D., & Bannister, S. (2017). Subducting an old subduction zone

sideways provides insights into what controls plate coupling. Earth and Planetary Science Letters,

466, 53–61. https://doi.org/10.1016/j.epsl.2017.03.004

174

Reyners, M., & McGinty, P. (1999). Shallow subduction tectonics in the Raukumara Peninsula, New

Zealand, as illuminated by earthquake focal mechanisms. Journal of Geophysical Research: Solid

Earth, 104(B2), 3025–3034. https://doi.org/10.1029/1998JB900081

Ristau, J. (2013). Update of Regional Moment Tensor Analysis for Earthquakes in New Zealand and

Adjacent Offshore Regions. Bulletin of the Seismological Society of America, 103(4), 2520–2533.

https://doi.org/10.1785/0120120339

Rivet, D., Campillo, M., Shapiro, N.M., Cruz-Atienza, V., Radiguet, M., Cotte, N., & Kostoglodov, V.

(2011). Seismic evidence of nonlinear crustal deformation during a large slow slip event in Mexico.

Geophysical Research Letters, 38(8), L08308. https://doi.org/10.1029/2011GL047151

Romanet, P., & Ide, S. (2019). Ambient tectonic tremors in Manawatu, Cape Turnagain, Marlborough,

and Puysegur, New Zealand. Earth Planets and Space, 71(1), 1–9. https://doi.org/10.1186/s40623019-1039-1

Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research:

Solid Earth, 88(B12), 10359–10370. https://doi.org/10.1029/JB088iB12p10359

Saar, M.O., & Manga, M. (2004). Depth dependence of permeability in the Oregon Cascades inferred

from hydrogeologic, thermal, seismic, and magmatic modeling constraints. Journal of Geophysical

Research: Solid Earth, 109(B4), B04204. https://doi.org/10.1029/2003JB002855

Sato, R. (1967). Attenuation of Seismic Waves. Journal of Physics of the Earth, 15(2), 32-61.

https://doi.org/10.4294/jpe1952.15.32

Schorlemmer, D., & Wiemer, S. (2005). Microseismicity data forecast rupture area. Nature, 434, 1086.

https://doi.org/10.1038/4341086a

Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across

different stress regimes. Nature, 437, 539–542. https://doi.org/10.1038/nature04094

Segall, P., Desmarais, E., Shelly, D., Miklius, A., & Cervelli, P. (2006). Earthquakes triggered by silent

slip events on Kīlauea volcano, Hawaii. Nature, 442, 71–74. https://doi.org/10.1038/nature04938

Shaddox, H.R., & Schwartz, S.Y. (2019). Subducted seamount diverts shallow slow slip to the forearc

of the northern Hikurangi subduction zone, New Zealand. Geology, 47(5), 415–418.

https://doi.org/10.1130/g45810.1

Shapiro, S.A., Huenges, E., & Borm, G. (1997). Estimating the crust permeability from fluid-injectioninduced seismic emission at the KTB site. Geophysical Journal International, 131(2), 15-18.

https://doi.org/10.1111/j.1365-246X.1997.tb01215.x

Shreedharan, S., Ikari, M., Wood, C., Saffer, D., Wallace, L., & Marone, C. (2022). Geochemistry,

Geophysics, Geosystems, 23, e2021GC010107. https:doi.org/10.1029/2021GC010107

Takahashi, H. (2021). A study on characteristics of tectonic tremor activity along the Japan Trench.

PhD thesis, Tohoku University, Japan.

Tenthorey, E., Cox, S.F., & Todd, H.F. (2003). Evolution of strength recovery and permeability during

175

fluid–rock reaction in experimental fault zones. Earth and Planetary Science Letters, 206(1–2),

161–172. https://doi.org/10.1016/S0012-821X(02)01082-8

Toda, S., Lin, J. & Stein, R.S. (2011). Using the 2011 Mw 9.0 off the Pacific coast of Tohoku

Earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer

to failure. Earth, Planets and Space, 63, 725–730. https://doi.org/10.5047/eps.2011.05.010

Toda, S., Stein, R.S., Richards-Dinger, K., & Bozkurt, S. (2005). Forecasting the evolution of

seismicity in southern California: Animations built on earthquake stress transfer. Journal of

Geophysical Research: Solid Earth, 110(B5), B05S16. https://doi.org/10.1029/2004JB003415

Todd, E.K., & Schwartz, S.Y. (2016). Tectonic tremor along the northern Hikurangi Margin, New

Zealand, between 2010 and 2015. Journal of Geophysical Research: Solid Earth, 121(12), 8706–

8719. https://doi.org/10.1002/2016JB013480

Todd, E.K., Schwartz, S.Y., Mochizuki, K., Wallace, L.M., Sheehan, A.F., Webb, S.C., et al. (2018).

Earthquakes and tremor linked to seamount subduction during shallow slow slip at the Hikurangi

margin, New Zealand. Journal of Geophysical Research: Solid Earth, 123(8), 6769–6783.

https://doi.org/10.1029/2018JB016136

Uchida, N. (2019). Detection of repeating earthquakes and their application in characterizing slow

fault slip. Progress in Earth and Planetary Science, 6(40). https://doi.org/10.1186/s40645-0190284-z

Uchida, N., & Matsuzawa, T. (2013). Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki

earthquake

rupture.

Earth

and

Planetary

Science

Letters,

374,

81-91.

https://doi.org/10.1016/j.epsl.2013.05.021

Utsu, T. (1965). A Method for Determining the Value of b in a Formula log n=a-bM showing the

Magnitude-Frequency Relation for Earthquakes. Geophysical bulletin of the Hokkaido University,

13, 99-103. https://doi.org/10.14943/gbhu.13.99

Wallace, L.M. (2020). Slow slip events in New Zealand. Annual Review of Earth and Planetary

Sciences, 48(1), 175–203. https://doi.org/10.1146/annurev-earth-071719-055104

Wallace, L.M., & Beavan, J. (2010). Diverse slow slip behavior at the Hikurangi subduction margin,

New

Zealand.

Journal

of

Geophysical

Research:

Solid

Earth,

115(B12),

1–20.

https://doi.org/10.1029/2010jb007717

Wallace, L.M., Beavan, J., Bannister, S., & Williams, C. (2012). Simultaneous long-term and shortterm slow slip events at the Hikurangi subduction margin, New Zealand: Implications for processes

that control slow slip event occurrence, duration, and migration. Journal of Geophysical Research:

Solid Earth, 117(B11), 1–18. https://doi.org/10.1029/2012jb009489

Wallace, L.M., Beavan, J., McCaffrey, R., & Darby, D. (2004). Subduction zone coupling and tectonic

block rotation in the North Island, New Zealand. Journal of Geophysical Research: Solid Earth,

109, B12406. https://doi.org/10.1029/2004JB003241

176

Wallace, L.M., & Eberhart-Phillips, D. (2013). Newly observed, deep slow slip events at the central

Hikurangi margin, New Zealand: Implications for downdip variability of slow slip and tremor, and

relationship to seismic structure. Geophysical Research Letters, 40(20), 5393–5398.

https://doi.org/10.1002/2013gl057682

Wallace, L.M., Hreinsdóttir, S., Ellis, S., Hamling, I., D’Anastasio, E., & Denys, P. (2018). Triggered

slow slip and afterslip on the southern Hikurangi subduction zone following the Kaikōura

earthquake.

Geophysical

Research

Letters,

45(10),

4710–4718.

https://doi.org/10.1002/2018gl077385

Wallace, L.M., Kaneko, Y., Hreinsdóttir, S., Hamling, I., Peng, Z., Bartlow, N., D’Anastasio, E., &

Fry, B. (2017). Large-scale dynamic triggering of shallow slow slip enhanced by overlying

sedimentary wedge. Nature Geoscience, 10(10), 765–770. https://doi.org/10.1038/ngeo3021

Wallace, L.M., Reyners, M., Cochran, U., Bannister, S., Barnes, P.M. et al. (2009). Characterizing the

seismogenic zone of a major plate boundary subduction thrust: Hikurangi margin, New Zealand.

Geochemistry, Geophysics, Geosystems, 10(10), Q10006. https://doi.org/10.1029/2009GC002610

Wallace, L.M., Webb, S.C., Ito, Y., Mochizuki, K., Hino, R., Henrys, S., Schwartz, S.Y., & Sheehan,

A.F. (2016). Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science,

352(6286), 701–704. https://doi.org/10.1126/science.aaf2349

Wang, W., Savage, M.K., Yates, A., Zal, H.J., Webb, S., Boulton, C., Warren-Smith, E., Madley, M.,

Stern, T., Fry, B., Mochizuki, K., & Wallace, L. (2022). Temporal velocity variations in the northern

Hikurangi margin and the relation to slow slip. Earth and Planetary Science Letters, 584, 117443.

https://doi.org/10.1016/j.epsl.2022.117443

Warren-Smith, E., Fry, B., Wallace, L., Chon, E., Henrys, S., Sheehan, A., et al. (2019). Episodic stress

and fluid pressure cycling in subducting oceanic crust during slow slip. Nature Geoscience, 12(6),

475–481. https://doi.org/10.1038/s41561-019-0367-x

Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs:

Examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society

of America, 90(4), 859–869. https://doi.org/10.1785/0119990114

Williams, C.A., Eberhart‐Phillips, D., Bannister, S., Barker, D.H.N., Henrys, S., Reyners, M., &

Sutherland, R. (2013). Revised Interface Geometry for the Hikurangi Subduction Zone, New

Zealand. Seismological Research Letters, 84(6), 1066–1073. https://doi.org/10.1785/0220130035

Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the

magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America,

95(2), 684–698. https://doi.org/10.1785/0120040007

Woods, K. (2022). Investigation of Hikurangi subduction zone slow slip events using onshore and

onshore geodetic data. PhD thesis, Victoria University of Wellington, Wellington, New Zealand.

Yamashita, T. (1998). Simulation of seismicity due to fluid migration in a fault zone. Geophysical

177

Journal International, 132(3), 674–686. https://doi.org/10.1046/j.1365-246X.1998.00483.x

Yarce, J., Sheehan, A.F., Nakai, J.S., Schwartz, S.Y., Mochizuki, K., Savage, M.K. et al. (2019).

Seismicity at the northern Hikurangi Margin, New Zealand, and investigation of the potential spatial

and temporal relationships with a shallow slow slip event. Journal of Geophysical Research: Solid

Earth, 124, 4751–4766. https://doi.org/10.1029/2018JB017211

Yarce, J., Sheehan, A.F., & Roecker, S. (2023). Temporal relationship of slow slip events and

microearthquake seismicity: Insights from earthquake automatic detections in the northern

Hikurangi margin, Aotearoa New Zealand. Geochemistry, Geophysics, Geosystems, 24,

e2022GC010537. https://doi.org/10.1029/2022GC010537

Yoshida, K., & Hasegawa, A. (2018). Hypocenter migration and seismicity pattern change in the

Yamagata-Fukushima border, NE Japan, caused by fluid movement and pore pressure variation.

Journal

of

Geophysical

Research:

Solid

Earth,

123,

5000–5017.

https://doi.org/10.1029/2018JB015468

Zal, H.J., Jacobs, K., Savage, M.K., Yarce, J., Mroczek, S., Graham, K., Todd, E.K., Nakai, J., Iwasaki,

Y., Sheehan, A., Mochizuki, K., Wallace, L., Schwartz, S., Webb, S., & Henrys, S. (2020). Temporal

and spatial variations in seismic anisotropy and VP/VS ratios in a region of slow slip. Earth and

Planetary Science Letters, 532, 115970. https://doi.org/10.1016/j.epsl.2019.115970

Zaliapin, I., & Ben-Zion, Y. (2013). ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る