リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Seismic Source Process Involving the Geometric Complexity of the Strike-slip Fault System」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Seismic Source Process Involving the Geometric Complexity of the Strike-slip Fault System

Tira, Tadapansawut 筑波大学 DOI:10.15068/0002006144

2023.01.17

概要

A complex rupture process of an earthquake can be controlled by the fault geometric complexity even for oceanic transform faults showing simple fault geometry or middle-scale magnitude 6 earthquakes which have been previously thought to have simple rupture evolution. To understand the rupture process, rupture models have been constructed by a widely used finite-fault inversion to explain the slip histories of an earthquake source. However, changes in rupture mechanism due to the complex fault geometry particularly for strike-slip earthquakes, cannot easily be captured by over-simplified modelling and make a difficult robust interpretation. To mitigate this problem, I apply an updated framework of potency density tensor inversion which can mitigate modelling errors of the uncertainty of Green’s function and fault geometric assumption within the inversion method. As a result, the adopted method can reveal the complex rupture process including the fault geometry. This dissertation examines the complex rupture process of the strike-slip earthquakes involving a major oceanic transform fault of the 2020 MW 7.7 Caribbean earthquake and a middle-scale conjugate strike- slip fault system of the 2014 MW 6.2 Thailand earthquake. According to the rupture models, the 2020 Caribbean exhibits the complex rupture evolution controlled by the fault geometric complexity corresponding to local bathymetric features. The rupture model of the 2020 Caribbean earthquake provides a new insightful rupture phenomenon, which the supershear rupture can propagate among the non-smooth fault geometry of the oceanic transform fault. The solution further suggests a possible interaction between the earthquake rupture process and the bathymetry, which the complex fault rupture may promote the subsidence due to the gravity within the extensional zone of the local bathymetric feature. For the 2014 Thailand earthquake, the rupture evolution exhibits the co-seismic between the conjugate north-south and northeast- southwest strike-slip fault planes, which the second rupture episode along the northeast- southwest fault plane may be triggered by the confined first rupture episode along the north- south fault plane. The multiple rupture episodes of the 2014 Thailand earthquake are confirmed by the numerical tests and the additional analysis with many different configurations. Moreover, the rupture evolution of the 2014 Thailand earthquake is consistent with the strongest damaged building location and the ground crack pattern. The rupture model of the 2014 Thailand earthquake provides a new finding that the co-seismic slip of the magnitude 6 earthquake can occur among the acute-angle conjugate strike-slip fault system. According to the 2020 Caribbean and the 2014 Thailand earthquakes, this dissertation reveals the unrecognized rupture evolution of the strike-slip earthquake including the hidden fault geometry along the oceanic transform fault and the middle-scale conjugate fault system, which the rupture evolution can be complex when the fault geometry is multiplex.

Keywords: Earthquake complex rupture process, Potency density tensor inversion method, Complex fault geometry, Oceanic transform fault, Conjugate strike-slip fault

この論文で使われている画像

参考文献

Abercrombie, R. E., & Ekström, G. (2001). Earthquake slip on oceanic transform faults. Nature, 410(6824), 74–77. https://doi.org/10.1038/35065064

Asano, K. (2005). Estimation of Source Rupture Process and Strong Ground Motion Simulation of the 2002 Denali, Alaska, Earthquake. Bulletin of the Seismological Society of America, 95(5), 1701–1715. https://doi.org/10.1785/0120040154

Bao, H., Ampuero, J. P., Meng, L., Fielding, E. J., Liang, C., Milliner, C. W. D., Feng, T., & Huang, H. (2019). Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nature Geoscience, 12(March), 200–206. https://doi.org/10.1038/s41561-018-0297-z

Bassin, C., Laske, G., & Masters, G. (2000). The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU, 81, F897. https://igppweb.ucsd.edu/∼gabi/crust2.html

Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). https://doi.org/10.1029/2001GC000252

Bouchon, M., & Karabulut, H. (2008). The aftershock signature of supershear earthquakes. Science, 320(5881), 1323–1325. https://doi.org/10.1126/science.1155030

Bouchon, M., Karabulut, H., Bouin, M. P., Schmittbuhl, J., Vallée, M., Archuleta, R., Das, S., Renard, F., & Marsan, D. (2010). Faulting characteristics of supershear earthquakes. Tectonophysics, 493(3–4), 244–253. https://doi.org/10.1016/j.tecto.2010.06.011

Bruhat, L., Fang, Z., & Dunham, E. M. (2016). Rupture complexity and the supershear transition on rough faults. Journal of Geophysical Research, 121, 1–15. https://doi.org/10.1002/2015JB012512

Calderoni, G., Rovelli, A., Ben-Zion, Y., & Di Giovambattista, R. (2015). Along-strike rupture directivity of earthquakes of the 2009 L’Aquila, central Italy, seismic sequence.

Geophysical Journal International, 203(1), 399–415. https://doi.org/10.1093/gji/ggv275 Calderoni, Giovanna, Rovelli, A., & Di Giovambattista, R. (2017). Rupture Directivity of the Strongest 2016–2017 Central Italy Earthquakes. Journal of Geophysical Research: Solid Earth, 122(11), 9118–9131. https://doi.org/10.1002/2017JB014118

Cesca, S., Zhang, Y., Mouslopoulou, V., Wang, R., Saul, J., Savage, M., Heimann, S., Kufner, S. K., Oncken, O., & Dahm, T. (2017). Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence. Earth and Planetary Science Letters, 478, 110–120. https://doi.org/10.1016/j.epsl.2017.08.024

Charusiri, P., & Pum-Im, S. (2009). Cenozoic Tectonic Evolution of Major Sedimentary Basins in Central, Northern, and the Gulf of Thailand. Best, 2(2), 40–62. Retrieved from https://www.semanticscholar.org/paper/Cenozoic-Tectonic-Evolution-of-Major- Sedimentary-in-Charusiri-Pum-Im/2540b6531d97006233c4f5c6500021ab5258a8fa

DMR Department of Mineral Resources. (2016). Active Fault Map of Thailand. Retrieved from http://www.dmr.go.th/n_more_news_en.php?nid=109490

Duan, B., & Oglesby, D. D. (2005). Multicycle dynamics of nonplanar strike-slip faults. Journal of Geophysical Research, 110(December 2004), 1–16. https://doi.org/10.1029/2004JB003298

Dziewonski, A. M., Chou, T. A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86(B4), 2825–2852. https://doi.org/10.1029/JB086iB04p02825

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

Fenton, C. H., Charusiri, P., & Wood, S. H. (2003). Recent paleoseismic investigations in Northern and Western Thailand. Annals of Geophysics, 46(5), 957–982. https://doi.org/10.4401/ag-3464

GCMT. (2014). Mw 6.2 Chiang Rai, Thailand. Retrieved from https://ds.iris.edu/ spud/momenttensor/9687293

GCMT. (2020). Mw 7.7 Cuba Region. Retrieved January 28, 2020, from https://ds.iris.edu/spud/momenttensor/18145993

GEBCO. (2020). Gridded Bathymetry Data Download. Retrieved from https://download.gebco.net

Grevemeyer, I., Hayman, N. W., Peirce, C., Schwardt, M., Avendonk, H. J. A. Van, Dannowski, A., & Papenberg, C. (2018). Episodic magmatism and serpentinized mantle exhumation at an ultraslow-spreading centre. Nature Geoscience, 11, 444–448. https://doi.org/10.1038/s41561-018-0124-6

Hartzell, S. H., & Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bulletin of the Seismological Society of America, 73(61), 1553–1583. https://doi.org/10.1785/BSSA07306A1553

Hayman, N. W., Grindlay, N. R., Perfit, M. R., Mann, P., Leroy, S., & De Lépinay, B. M. (2012). Oceanic core complex development at the ultraslow spreading Mid-Cayman Spreading Center. Geochemistry, Geophysics, Geosystems, 12(3), 1–21. https://doi.org/10.1029/2010GC003240

Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., & WSM Team. (2016). World Stress Map Database Release 2016. V. 1.1. (GFZ Data Services). https://doi.org/10.5880/WSM.2016.001

Hicks, S. P., Okuwaki, R., Steinberg, A., Rychert, C. A., Harmon, N., Abercrombie, R. E., Bogiatzis, P., Schlaphorst, D., Zahradnik, J., Kendall, J.M., Yagi, Y., Shimizu, K., & Sudhaus, H. (2020). Back-propagating supershear rupture in the 2016 Mw 7.1 Romanche transform fault earthquake. Nature Geoscience, 13(9), 647–653. https://doi.org/10.1038/s41561-020-0619-9

Huang, Y., Ampuero, J. P., & Helmberger, D. V. (2016). The potential for supershear earthquakes in damaged fault zones – theory and observations. Earth and Planetary Science Letters, 433, 109–115. https://doi.org/10.1016/j.epsl.2015.10.046

Huchon, P., Le Pichon, X., & Rangin, C. (1994). Indochina Peninsula and the collision of India and Eurasia. Geology, 22(1), 27–30. https://doi.org/10.1130/0091- 7613(1994)022<0027:IPATCO>2.3.CO;2

Idini, B., & Ampuero, J. P. (2020). Fault-Zone Damage Promotes Pulse-Like Rupture and Back-Propagating Fronts via Quasi-Static Effects. Geophysical Research Letters, 47(23), 1–12. https://doi.org/10.1029/2020GL090736

Iio, Y. (1997). Frictional coefficient on faults in a seismogenic region inferred from earthquake mechanism solutions. Journal of Geophysical Research: Solid Earth, 102(B3), 5403–5412. https://doi.org/10.1029/96jb03593

ISC. (2021). International Seismological Centre. https://doi.org/10.31905/D808B830 Kanamori, H., & Brodsky, E. E. (2004). The physics of earthquakes. Reports on Progress in Physics, 67(8), 1429–1496. https://doi.org/10.1088/0034-4885/67/8/R03

Kanthiya, S., Mangkhemthong, N., & Morley, C. K. (2019). Structural interpretation of Mae Suai Basin, Chiang Rai Province, based on gravity data analysis and modelling. Heliyon, 5(2), e01232. https://doi.org/10.1016/j.heliyon.2019.e01232

Kase, Y., & Day, S. M. (2006). Spontaneous rupture processes on a bending fault. Geophysical Research Letters, 33(10), 1–4. https://doi.org/10.1029/2006GL025870 Kazmer, M., Sanittham, K., Charusiri, P., & Pailoplee, S. (2011). Archaeoseismology of the AD 1545 Earthquake in Chiang Mai Thailand. 2nd INQUA-IGCP-567 International Workshop on Active Tectonics, Earthquake Geology, Archaeology and Engineering, Corinth, Greece, 1–4. Retrieved from http://www.eatgru.sc.chula.ac.th/Thai/research/pdf/paper_2/111.pdf

Kehoe, H. L., & Kiser, E. D. (2020). Evidence of a Supershear Transition Across a Fault Stepover. Geophysical Research Letters. https://doi.org/10.1029/2020GL087400

Kikuchi, M., & Kanamori, H. (1991). Inversion of complex body waves—III. Bulletin of the Seismological Society of America, 81(6), 2335–2350. https://doi.org/10.1785/BSSA0810062335

Laske, G., Masters, G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1.0 -A 1-degree Global Model of Earth’s Crust, Geophys. Res. Abstract. Abstract EGU2013, 2658. Retrieved from http://igppweb.ucsd.edu/~gabi/rem.html

Leloup, P. H., Amaud, N., Lacassin, R., Kienast, J. R., Harrison, T. M., Phan Trong, T. T., Replumaz, A., & Tapponnier, P. (2001). New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. Journal of Geophysical Research, 106, 6683–6732. https://doi.org/10.1029/2000JB900322

Lhamphoonsup, K., Soisa, T., & Sriwangpon, P. (2014). Preliminary Geophysical Investigation in An Earthquake Impact Area Chiang Rai Province. In Annual Meeting Report of The 2014 Chiang Rai Earthquake. Retrieved from http://www.dmr.go.th/download/article/article_20141119151717.pdf

McGuire, J. J., Collins, J. A., Gouédard, P., Roland, E., Lizarralde, D., Boettcher, M. S., Behn, M. D., & Hilst, R. D. Van Der. (2012). Variations in earthquake rupture properties along the Gofar transform fault , East Pacific Rise. Nature Geoscience, 5(May), 336–341. https://doi.org/10.1038/ngeo1454

Meng, L., Ampuero, J. P., Stock, J., Duputel, Z., Luo, Y., & Tsai, V. C. (2012). Earthquake in a maze: Compressional rupture branching during the 2012 Mw 8.6 Sumatra earthquake. Science, 337(6095), 724–726. https://doi.org/10.1126/science.1224030

Morley, C. K. (2002). A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics, 347(4), 189–215. https://doi.org/10.1016/S0040- 1951(02)00061-6

Morley, C. K. (2007). Variations in Late Cenozoic-Recent strike-slip and oblique-extensional geometries, within Indochina: The influence of pre-existing fabrics. Journal of Structural Geology, 29(1), 36–58. https://doi.org/10.1016/j.jsg.2006.07.003

Morley, Christopher K., Charusiri, P., & Watkinson, I. M. (2011). Structural geology of Thailand during the Cenozoic. The Geology of Thailand, (January 2011), 273–334. https://doi.org/10.1144/goth.11

Nardkulpat, A., Phodee, P., Karnchanasuthum, S., Nualchawee, K., & Rakwatin, P. (2017). Using Differential InSAR Technique for Coseismic Displacement Study of Mw6.3 Chiang Rai Earthquake, Thailand. Conference: GEOINFOTECH2017. Retrieved from http://research.gistda.or.th/assets/uploads/ pdfs/49784-7.-differential-insar-mw-6.3-.pdf

NOAA. (2020). Mw7.7 U.S. Tsunami Warning System. Retrieved January 28, 2020, from https://www.tsunami.gov/events/PHEB/2020/01/28/20028001/5/WECA41/WECA41.txt

Noisagool, S., Boonchaisuk, S., Pornsopin, P., & Siripunvaraporn, W. (2016). The regional moment tensor of the 5 May 2014 Chiang Rai earthquake (Mw = 6.5), Northern Thailand, with its aftershocks and its implication to the stress and the instability of the Phayao Fault Zone. Journal of Asian Earth Sciences, 127(May 2014), 231–245. https://doi.org/10.1016/j.jseaes.2016.06.008

Okuwaki, R., Hirano, S., Yagi, Y., & Shimizu, K. (2020). Inchworm-like source evolution through a geometrically complex fault fueled persistent supershear rupture during the 2018 Palu Indonesia earthquake. Earth and Planetary Science Letters, 547, 116449. https://doi.org/10.1016/j.epsl.2020.116449

Olson, A. H., & Apsel, R. J. (1982). Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake. Bulletin of the Seismological Society of America, 72(6A), 1969–2001. https://doi.org/10.1785/BSSA07206A1969

Ozacar, A. Arda, & Beck, S. L. (2004). The 2002 Denali fault and 2001 Kunlun fault earthquakes: Complex rupture processes of two large strike-slip events. Bulletin of the Seismological Society of America, 94(6 SUPPL. B), 278–292. https://doi.org/10.1785/0120040604

Ozacar, Arda A., Beck, S. L., & Christensen, D. H. (2003). Source process of the 3 November 2002 Denali fault earthquake (central Alaska) from teleseismic observations. Geophysical Research Letters, 30(12), 1–4. https://doi.org/10.1029/2003GL017272

Pailoplee, S., & Charusiri, P. (2016). Seismic hazards in Thailand: A compilation and updated probabilistic analysis 4. Seismology. Earth, Planets and Space, 68(1). https://doi.org/10.1186/s40623-016-0465-6

Pailoplee, S., Sugiya, Y., & Charusiri, P. (2009). Determini s tic and probabilistic seismic hazard analyses in Thailand and adjacent areas using active fault data. Earth Planet Space, 61, 1313–1325. https://doi.org/10.1186/BF03352984

Pananont, P., Herman, M. W., Pornsopin, P., Furlong, K. P., Habangkaem, S., Waldhauser, F., Wongwai, W., Limpisawad, S., Warnitchai, P., Kosuwan, S., & Wechbunthung, B. (2017). Seismotectonics of the 2014 Chiang Rai, Thailand, earthquake sequence.

Journal of Geophysical Research: Solid Earth, 122(8), 6367–6388. https://doi.org/10.1002/2017JB014085

Peirce, C., Robinson, A. H., Campbell, A. M., Funnell, M. J., Grevemeyer, I., Hayman, N. W., Van Avendonk, H.J.A., & Castiello, G. (2019). Seismic investigation of an active ocean-continent transform margin: The interaction between the Swan Islands Fault Zone and the ultraslow-spreading Mid-Cayman Spreading Centre. Geophysical Journal International, 219(1), 159–184. https://doi.org/10.1093/gji/ggz283

Perfit, M. R., & Heezen, B. C. (1978). The geology and evolution of the Cayman Trench. Gelogical Society of America Bulletin, 89, 1155–1174. https://doi.org/10.1130/0016- 7606(1978)89<1155

Ragon, T., Sladen, A., & Simons, M. (2018). Accounting for uncertain fault geometry in earthquake source inversions - I: Theory and simplified application. Geophysical Journal International, 214(2), 1174–1190. https://doi.org/10.1093/gji/ggy187

Ray, T., & Wallace, T. C. (1995). Modern global seismology (Academic P). https://doi.org/ 10.1038/35065064

Rojas-Agramonte, Y., Neubauer, F., Handler, R., Garcia-Delgado, D. E., Friedl, G., & Delgado-Damas, R. (2005). Variation of palaeostress patterns along the Oriente transform wrench corridor, Cuba: Significance for Neogene-Quaternary tectonics of the Caribbean realm. Tectonophysics, 396, 161–180. https://doi.org/10.1016/j.tecto.2004.11.006

Roland, E., Lizarralde, D., Mcguire, J. J., & Collins, J. A. (2012). Seismic velocity constraints on the material properties that control earthquake behavior at the Quebrada- Discovery-Gofar transform faults , East Pacific Rise. Journal of Geophysical Research, 117, 1–27. https://doi.org/10.1029/2012JB009422

Rosencrantz, E., & Sclater, J. G. (1986). Depth and age in the Cayman Trough. Earth and Planetary Science Letters, 79(1–2), 133–144. https://doi.org/10.1016/0012- 821X(86)90046-4

Shimizu, K., Yagi, Y., Okuwaki, R., & Fukahata, Y. (2020). Development of an inversion method to extract information on fault geometry from teleseismic data. Geophysical Journal International, 220(2), 1055–1065. https://doi.org/10.1093/gji/ggz496

Shimizu, K., Yagi, Y., Okuwaki, R., & Fukahata, Y. (2021). Construction of fault geometry by finite-fault inversion of teleseismic data. Geophysical Journal International, 224(2), 1003–1014. https://doi.org/10.1093/gji/ggaa501

Simons, W. J. F., Socquet, A., Vigny, C., Ambrosius, B. A. C., Abu, S. H., Promthong, C., Subarya, C., Sarsito, D.A., Matheussen, S., Morgan, P., & Spakman, W. (2007). A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries. Journal of Geophysical Research: Solid Earth, 112(6), 1–20. https://doi.org/10.1029/2005JB003868

Tadapansawut, T., Okuwaki, R., Yagi, Y., & Yamashita, S. (2021). Rupture Process of the 2020 Caribbean Earthquake Along the Oriente Transform Fault, Involving Supershear Rupture and Geometric Complexity of Fault. Geophysical Research Letters, 48(1), 1–19. https://doi.org/10.1029/2020GL090899

Tadapansawut, T., Yagi, Y., Okuwaki, R., Yamashita, S., & Shimizu, K. (2022). Complex rupture process on the conjugate fault system of the 2014 Mw 6.2 Thailand earthquake. Progress in Earth and Planetary Science, 9(1), 26. https://doi.org/10.1186/s40645-022- 00484-5

Tingay, M. R. P., Morley, C. K., Hillis, R. R., & Meyer, J. (2010). Present-day stress orientation in Thailand’s basins. Journal of Structural Geology, 32(2), 235–248. https://doi.org/10.1016/j.jsg.2009.11.008

TMD Thai Meteorological Department. (2014). Mw 6.3 Chiang Rai, Thailand. Retrieved from https://earthquake.tmd.go.th/inside-info.html?earthquake=2085

Uchide, T., & Ide, S. (2010). Scaling of earthquake rupture growth in the Parkfield area: Self- similar growth and suppression by the finite seismogenic layer. Journal of Geophysical Research, 115(B11), B11302. https://doi.org/10.1029/2009JB007122

Ulrich, T., Vater, S., Madden, E. H., Behrens, J., & Dinther, Y. Van. (2019). Coupled, Physics-based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami. Pure and Applied Geophysics, 176(10), 4069–4109. https://doi.org/10.1007/s00024-019-02290-5

USGS. (2014). M6.1 - 13 km NNW of Phan, Thailand. Retrieved from https://earthquake.usgs.gov/earthquakes/eventpage/usb000qack/executive

USGS. (2020). Moment Tensor. Retrieved from https://earthquake.usgs.gov/earthquakes/eventpage/us60007idc/moment-tensor

Van Avendonk, H. J. A., Harding, A. J., Orcutt, J. A., & McClain, J. S. (2001). Contrast in crustal structure across the Clipperton transform fault from travel time tomography. Journal of Geophysical Research: Solid Earth, 106(B6), 10961–10981. https://doi.org/10.1029/2000jb900459

Waldhauser, F. (2001). hypoDD-A Program to Compute Double-Difference Hypocenter Locations. https://doi.org/10.3133/ofr01113

Wechbunthung, B. (2014). Seismic Data of Earthquake at Chiang Rai on May 5, 2014. In Annual Meeting Report of The 2014 Chiang Rai Earthquake. Retrieved from http://www.dmr.go.th/download/article/article_20141119151717.pdf

Wiwegwin, W., & Kosuwan, S. (2014). Annual Meeting Report of The 2014 Chiang Rai Earthquake. Retrieved from http://www.dmr.go.th/download/article/article_20141119151717.pdf

Wongwai, W., Pananont, P., & Pornsopin, P. (2013). Teleseismic Receiver Functions Study of the Crustal Thickness Underneath Thailand. American Geophysical Union, Fall Meeting 2013, Abstract Id. S33F-03. Retrieved from http://adsabs.harvard.edu/abs/2013AGUFM.S33F..03W

Yagi, Y., & Fukahata, Y. (2008). Importance of covariance components in inversion analyses of densely sampled observed data: An application to waveform data inversion for seismic source processes. Geophysical Journal International, 175(1), 215–221. https://doi.org/10.1111/j.1365-246X.2008.03884.x

Yagi, Y., & Fukahata, Y. (2011). Introduction of uncertainty of Green’s function into waveform inversion for seismic source processes. Geophysical Journal International, 186(2), 711–720. https://doi.org/10.1111/j.1365-246X.2011.05043.x

Yamashita, S., Yagi, Y., Okuwaki, R., Shimizu, K., Agata, R., & Fukahata, Y. (2021). Consecutive ruptures on a complex conjugate fault system during the 2018 Gulf of Alaska earthquake. Scientific Reports, 11(1), 5979. https://doi.org/10.1038/s41598-021- 85522-w

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る