リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Carbon dangling-bond center (carbon Pb center) at 4H-SiC(0001)/SiO2 interface」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Carbon dangling-bond center (carbon Pb center) at 4H-SiC(0001)/SiO2 interface

Y. Matsushita 東京工業大学 DOI:https://doi.org/10.1063/1.5143555

2020.02.20

概要

We identify a carbon dangling-bond center intrinsically formed at thermally oxidized 4H-SiC(0001)/SiO2 interfaces. Our electrically detected-magnetic-resonance spectroscopy and first-principles calculations demonstrate that this center, which we name “the PbC center,” is formed at a carbon adatom on the 4H-SiC(0001) honeycomb-like structure. The PbC center (Si3ΞC-, where “-” represents an unpaired elec- tron) is determined to be a just carbon version of the famous Pb center (Si dangling-bond center, Si3ΞSi-) at Si(111)/SiO2 interfaces because we found close similarities between their wave functions. The PbC center acts as one of the major interfacial traps in 4H-SiC(0001) metal- oxide-semiconductor field-effect transistors (MOSFETs), which decreases the free-carrier density and the field-effect mobility of 4H-SiC(0001) MOSFETs. The formation of the PbC centers has the role of reducing the oxidation-induced strain, similar to the case of the formation of the Pb centers.

この論文で使われている画像

参考文献

1. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices Third Ed. (John Wiley & Sons, New York, 2007).

2. G. Liu, B. R. Tuttle, and S. Dhar, Appl. Phys. Rev. 2, 021307 (2015).

3. T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology (Wiley, Singapore, 2014).

4. T. Oka, T. Ina, Y. Ueno, and J. Nishii, Appl. Phys. Express 8, 054101 (2015).

5. S. J. Pearton, F. Ren, M. Tadjer, and J. Kim, J. Appl. Phys. 124, 220901 (2018).

6. T. Matsumoto, H. Kato, K. Oyama, R. Arai, T. Makino, M. Ogura, D. Takeuchi, T. Inokuma, N. Tokuda, and S. Yamasaki, Sci. Rep. 6, 31585 (2016).

7. P. M. Lenahan and J. F. Conley, Jr., J. Vac. Sci. Technol., B 16, 2134 (1998).

8. A. Stirling, A. Pasquarello, J.-C. Charlier, and R. Car, Phys. Rev. Lett. 85, 2773 (2000).

9. Y. Nishi, Jpn. J. Appl. Phys., Part 1 10, 52 (1971).

10. K. L. Brower, Appl. Phys. Lett. 43, 1111 (1983).

11. A. Stesmans and B. Nouwen, Phys. Rev. B 61, 16068 (2000).

12. A. Stesmans and V. V. Afanas’ev, J. Appl. Phys. 83, 2449 (1998).

13. A. Stesmans, B. Nouwen, and V. V. Afanas’ev, Phys. Rev. B 58, 15801 (1998).

14. M. Jiv˘anescu, A. Stesmans, R. Kurstjens, and F. Dross, Jpn. J. Appl. Phys., Part 1 52, 041301 (2013).

15. S. Paleari, A. Molle, and M. Fanciulli, Appl. Phys. Lett. 93, 242105 (2008).

16. S. Paleari, A. Molle, and M. Fanciulli, Phys. Rev. Lett. 110, 206101 (2013).

17. T. Umeda, G.-W. Kim, T. Okuda, M. Sometani, T. Kimoto, and S. Harada, Appl. Phys. Lett. 113, 061605 (2018).

18. T. Umeda, Y. Nakano, E. Higa, T. Okuda, T. Kimoto, T. Hosoi, H. Watanabe, M. Sometani, and S. Harada, J. Appl. Phys. (unpublished).

19. T. Aichinger and P. M. Lenahan, Appl. Phys. Lett. 101, 083504 (2012).

20. C. J. Cochrane, P. M. Lenahan, and A. J. Lelis, J. Appl. Phys. 109, 014506 (2011).

21. C. J. Cochrane, P. M. Lenahan, and A. J. Lelis, Appl. Phys. Lett. 100, 023509 (2012).

22. G. Gruber, J. Cottom, R. Meszaros, M. Koch, G. Pobegen, T. Aichinger, D. Peters, and P. Hadley, J. Appl. Phys. 123, 161514 (2018).

23. T. Umeda, Y. Kagoyama, K. Tomita, Y. Abe, M. Sometani, M. Okamoto, S. Harada, and T. Hatakeyama, Appl. Phys. Lett. 115, 151602 (2019).

24. J. L. Cantin, H. J. von Bardeleben, Y. Shishkin, Y. Ke, R. P. Devaty, and W. J. Choyke, Phys. Rev. Lett. 92, 015502 (2004).

25. T. Hatakeyama, Y. Kiuchi, M. Sometani, S. Harada, D. Okamoto, H. Yano, Y. Yonezawa, and H. Okumura, Appl. Phys. Express 10, 046601 (2017) and refer- ences therein.

26. X. Li, A. Ermakov, V. Amarasinghe, E. Garfunkel, T. Gustafsson, and L. C. Feldman, Appl. Phys. Lett. 110, 141604 (2017).

27. As discussed in Ref. 26, an interfacial strain or a compressive strain in a SiO2 layer is divided into two components, rth and rin, which originate from a ther- mal expansion mismatch and a structural mismatch, respectively. Quantitative research studies showed that rth = —0.17 GPa and rin = —0.23 GPa in a Si/ SiO2 system, while rth = —0.24 GPa and rin ≈ —0.07 GPa in a 4H-SiC(0001)/ SiO2 system.26 Therefore, despite the large structural mismatch between 4H- SiC(0001) and SiO2, the residual rin was largely relaxed in SiC. We speculate that the presence of C adatoms contributes to this relaxation.

28. J. A. Weil, J. R. Bolton, and J. E. Wertz, Electron Paramagnetic Resonance (John Wiley & Sons, New York, 1994).

29. J. Isoya, T. Umeda, N. Mizuochi, N. T. Son, E. Janz´en, and T. Ohshima, Phys. Statuss Solidi B 245, 1298 (2008).

30. T. Kobayashi, K. Harada, Y. Kumagai, F. Oba, and Y. Matsushita, J. Appl. Phys. 125, 125701 (2019).

31. T. Kobayashi and Y. Matsushita, J. Appl. Phys. 126, 145302 (2019).

32. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

33. Y. Hinuma, Y. Kumagai, F. Oba, and I. Tanaka, Comp. Mater. Sci. 113, 221 (2016).

34. H. J. S. Ge and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003); 124, 219906 (2006).

35. Y. Matsushita, K. Nakamura, and A. Oshiyama, Phys. Rev. B 84, 075205 (2011) and references therein.

36. K. Sz´asz, T. Hornos, M. Marsman, and A. Gali, Phys. Rev. B 88, 075202 (2013).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る